G. Ghinea, R. Kannan, Sridhar Swaminathan, Suresh Kannaiyan
{"title":"一种新的以用户为中心的个性化视频摘要设计","authors":"G. Ghinea, R. Kannan, Sridhar Swaminathan, Suresh Kannaiyan","doi":"10.1109/ICMEW.2014.6890642","DOIUrl":null,"url":null,"abstract":"In the past, several automatic video summarization systems had been proposed to generate video summary. However, a generic video summary that is generated based only on audio, visual and textual saliencies will not satisfy every user. This paper proposes a novel system for generating semantically meaningful personalized video summaries, which are tailored to the individual user's preferences over video semantics. Each video shot is represented using a semantic multinomial which is a vector of posterior semantic concept probabilities. The proposed system stitches video summary based on summary time span and top-ranked shots that are semantically relevant to the user's preferences. The proposed summarization system is evaluated using both quantitative and subjective evaluation metrics. The experimental results on the performance of the proposed video summarization system are encouraging.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel user-centered design for personalized video summarization\",\"authors\":\"G. Ghinea, R. Kannan, Sridhar Swaminathan, Suresh Kannaiyan\",\"doi\":\"10.1109/ICMEW.2014.6890642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past, several automatic video summarization systems had been proposed to generate video summary. However, a generic video summary that is generated based only on audio, visual and textual saliencies will not satisfy every user. This paper proposes a novel system for generating semantically meaningful personalized video summaries, which are tailored to the individual user's preferences over video semantics. Each video shot is represented using a semantic multinomial which is a vector of posterior semantic concept probabilities. The proposed system stitches video summary based on summary time span and top-ranked shots that are semantically relevant to the user's preferences. The proposed summarization system is evaluated using both quantitative and subjective evaluation metrics. The experimental results on the performance of the proposed video summarization system are encouraging.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel user-centered design for personalized video summarization
In the past, several automatic video summarization systems had been proposed to generate video summary. However, a generic video summary that is generated based only on audio, visual and textual saliencies will not satisfy every user. This paper proposes a novel system for generating semantically meaningful personalized video summaries, which are tailored to the individual user's preferences over video semantics. Each video shot is represented using a semantic multinomial which is a vector of posterior semantic concept probabilities. The proposed system stitches video summary based on summary time span and top-ranked shots that are semantically relevant to the user's preferences. The proposed summarization system is evaluated using both quantitative and subjective evaluation metrics. The experimental results on the performance of the proposed video summarization system are encouraging.