一个较好的不满意阈值的上界

L. Kirousis, E. Kranakis, D. Krizanc
{"title":"一个较好的不满意阈值的上界","authors":"L. Kirousis, E. Kranakis, D. Krizanc","doi":"10.1090/dimacs/035/18","DOIUrl":null,"url":null,"abstract":"Let be a random Boolean formula that is an instance of 3-SAT. We consider the problem of computing the least real number such that if the ratio of the number of clauses over the number of variables of strictly exceeds , then is almost certainly unsatissable. By a well known and more or less straightforward argument, it can be shown that 5:191. This upper bound was improved by Kamath, Motwani, Palem, and Spirakis to 4.758, by rst providing new improved bounds for the occupancy problem. There is strong experimental evidence that the value of is around 4.2. In this work, we show that this upper bound can be improved to 4.667. Our proof is elementary and short, and does not use unveriiable mechanical calculations. Moreover it generalizes in a straightforward manner to k-SAT, for k > 3.","PeriodicalId":434373,"journal":{"name":"Satisfiability Problem: Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A better upper bound for the unsatisfiability threshold\",\"authors\":\"L. Kirousis, E. Kranakis, D. Krizanc\",\"doi\":\"10.1090/dimacs/035/18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a random Boolean formula that is an instance of 3-SAT. We consider the problem of computing the least real number such that if the ratio of the number of clauses over the number of variables of strictly exceeds , then is almost certainly unsatissable. By a well known and more or less straightforward argument, it can be shown that 5:191. This upper bound was improved by Kamath, Motwani, Palem, and Spirakis to 4.758, by rst providing new improved bounds for the occupancy problem. There is strong experimental evidence that the value of is around 4.2. In this work, we show that this upper bound can be improved to 4.667. Our proof is elementary and short, and does not use unveriiable mechanical calculations. Moreover it generalizes in a straightforward manner to k-SAT, for k > 3.\",\"PeriodicalId\":434373,\"journal\":{\"name\":\"Satisfiability Problem: Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Satisfiability Problem: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/035/18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Satisfiability Problem: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/035/18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

设一个随机布尔公式,它是3-SAT的一个实例。考虑最小实数的计算问题,当子句数与变量数之比严格超过时,则几乎肯定是不可满足的。通过一个众所周知的或多或少直截了当的论证,我们可以证明5:191。Kamath、Motwani、Palem和Spirakis将这个上界改进为4.758,为占用问题提供了新的改进的上界。有强有力的实验证据表明,的值在4.2左右。在这项工作中,我们证明了这个上界可以改进为4.667。我们的证明是简单而简短的,并没有使用无法验证的力学计算。此外,对于k > 3,它可以直接推广到k- sat。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A better upper bound for the unsatisfiability threshold
Let be a random Boolean formula that is an instance of 3-SAT. We consider the problem of computing the least real number such that if the ratio of the number of clauses over the number of variables of strictly exceeds , then is almost certainly unsatissable. By a well known and more or less straightforward argument, it can be shown that 5:191. This upper bound was improved by Kamath, Motwani, Palem, and Spirakis to 4.758, by rst providing new improved bounds for the occupancy problem. There is strong experimental evidence that the value of is around 4.2. In this work, we show that this upper bound can be improved to 4.667. Our proof is elementary and short, and does not use unveriiable mechanical calculations. Moreover it generalizes in a straightforward manner to k-SAT, for k > 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信