Posma S. M. Lumbanraja
{"title":"MODEL PENULARAN PENYAKIT DEMAM BERDARAH DENGUE (DBD) DALAM SYSTEM DYNAMIK BERDIMENSI DUA","authors":"Posma S. M. Lumbanraja","doi":"10.46880/mtk.v7i1.255","DOIUrl":null,"url":null,"abstract":"Here we examine the dynamic model of the spread of Dengue Hemorrhagic Fever (DHF) assuming a constant number of host and vector populations. In this paper, the model is reduced from a three-dimensional system to a two-dimensional system so that the dynamic behavior can be analyzed in the R2 plane. In the two-dimensional model, if the threshold parameter R > 1, the endemic state becomes globally asymptotically stable. During the analysis of its dynamic behavior, a trapping region is found which contains a heteroclinic orbit connecting the slowing point, namely the origin and the endemic point. By using heteroclinic orbits, it can be estimated the time period required from a state to reach a certain state.","PeriodicalId":384219,"journal":{"name":"METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46880/mtk.v7i1.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们检查登革热出血热(DHF)传播的动态模型假设恒定数量的宿主和媒介种群。本文将模型从三维系统简化为二维系统,以便在R2平面上分析其动力行为。在二维模型中,当阈值参数R > 1时,地方性状态趋于全局渐近稳定。在分析其动力学行为时,发现了一个包含连接慢点(即原点和特有点)的异斜轨道的俘获区。利用异斜轨道,可以估计从一个状态到另一个状态所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODEL PENULARAN PENYAKIT DEMAM BERDARAH DENGUE (DBD) DALAM SYSTEM DYNAMIK BERDIMENSI DUA
Here we examine the dynamic model of the spread of Dengue Hemorrhagic Fever (DHF) assuming a constant number of host and vector populations. In this paper, the model is reduced from a three-dimensional system to a two-dimensional system so that the dynamic behavior can be analyzed in the R2 plane. In the two-dimensional model, if the threshold parameter R > 1, the endemic state becomes globally asymptotically stable. During the analysis of its dynamic behavior, a trapping region is found which contains a heteroclinic orbit connecting the slowing point, namely the origin and the endemic point. By using heteroclinic orbits, it can be estimated the time period required from a state to reach a certain state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信