生物传感器应用的CMOS电路和流体网络的可扩展混合集成

McKay Lindsay, Shaan Sengupta, Kevin Bishop, M. Co, Chien-Hua Chen, M. Cumbie, M. Johnston
{"title":"生物传感器应用的CMOS电路和流体网络的可扩展混合集成","authors":"McKay Lindsay, Shaan Sengupta, Kevin Bishop, M. Co, Chien-Hua Chen, M. Cumbie, M. Johnston","doi":"10.1109/BIOCAS.2017.8325553","DOIUrl":null,"url":null,"abstract":"CMOS-based optical and electrical sensors are attractive for lab-on-chip applications, where they provide high-sensitivity and dense scalability in a small, low-cost form factor. However, controlled delivery of fluid samples to the chip surface remains a difficult obstacle for lab-on-CMOS development. In this paper, we present a method for the scalable integration of fluidic channels and silicon integrated circuit (IC) substrates using a commercial fan-out wafer-level packaging (FOWLP) fabrication approach. After planar, near-seamless embedding of ICs in compression-molded epoxy wafers, we use standard semiconductor processing methods to define planar electrical contacts, and multi-layer laser-cut microfluidics are used to define channels over the IC surface. In the completed device, both electrical and fluidic routing are provided to a custom CMOS optical sensor IC, and an optical transmission experiment demonstrates combined connectivity and generalizable platform utility for lab-on-CMOS and lab-on-chip applications.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable hybrid integration of CMOS circuits and fluidic networks for biosensor applications\",\"authors\":\"McKay Lindsay, Shaan Sengupta, Kevin Bishop, M. Co, Chien-Hua Chen, M. Cumbie, M. Johnston\",\"doi\":\"10.1109/BIOCAS.2017.8325553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CMOS-based optical and electrical sensors are attractive for lab-on-chip applications, where they provide high-sensitivity and dense scalability in a small, low-cost form factor. However, controlled delivery of fluid samples to the chip surface remains a difficult obstacle for lab-on-CMOS development. In this paper, we present a method for the scalable integration of fluidic channels and silicon integrated circuit (IC) substrates using a commercial fan-out wafer-level packaging (FOWLP) fabrication approach. After planar, near-seamless embedding of ICs in compression-molded epoxy wafers, we use standard semiconductor processing methods to define planar electrical contacts, and multi-layer laser-cut microfluidics are used to define channels over the IC surface. In the completed device, both electrical and fluidic routing are provided to a custom CMOS optical sensor IC, and an optical transmission experiment demonstrates combined connectivity and generalizable platform utility for lab-on-CMOS and lab-on-chip applications.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于cmos的光学和电子传感器对于芯片上的实验室应用具有吸引力,它们以小而低成本的形式提供高灵敏度和密集的可扩展性。然而,控制流体样品到芯片表面的输送仍然是实验室cmos开发的一个困难障碍。在本文中,我们提出了一种采用商业扇形圆片级封装(FOWLP)制造方法的流体通道和硅集成电路(IC)衬底的可扩展集成方法。在压缩成型环氧晶圆中平面嵌入IC后,我们使用标准的半导体加工方法来定义平面电触点,并使用多层激光切割微流体来定义IC表面上的通道。在完成的器件中,电气和流体路由都提供给定制的CMOS光学传感器IC,光传输实验展示了CMOS实验室和芯片实验室应用的组合连接性和通用平台实用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable hybrid integration of CMOS circuits and fluidic networks for biosensor applications
CMOS-based optical and electrical sensors are attractive for lab-on-chip applications, where they provide high-sensitivity and dense scalability in a small, low-cost form factor. However, controlled delivery of fluid samples to the chip surface remains a difficult obstacle for lab-on-CMOS development. In this paper, we present a method for the scalable integration of fluidic channels and silicon integrated circuit (IC) substrates using a commercial fan-out wafer-level packaging (FOWLP) fabrication approach. After planar, near-seamless embedding of ICs in compression-molded epoxy wafers, we use standard semiconductor processing methods to define planar electrical contacts, and multi-layer laser-cut microfluidics are used to define channels over the IC surface. In the completed device, both electrical and fluidic routing are provided to a custom CMOS optical sensor IC, and an optical transmission experiment demonstrates combined connectivity and generalizable platform utility for lab-on-CMOS and lab-on-chip applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信