Nilanjana Bhattacharya, Volkmar Frinken, U. Pal, P. Roy
{"title":"在线手写体文本的覆盖重复和划掉检测","authors":"Nilanjana Bhattacharya, Volkmar Frinken, U. Pal, P. Roy","doi":"10.1109/ACPR.2015.7486589","DOIUrl":null,"url":null,"abstract":"Noise detection in online handwritten text is an important task for data acquisition. Noise occurs in online handwritten text in various ways. For example, crossing out the previously written text due to misspelling, repeated writing of the same stroke several times following a slightly different trajectory, simply writing corrections over other text are very common. Detection of these unwanted regions is a crucial pre-processing step in automatic text recognition. Currently detection and removal/correction of such regions are often done manually after collecting the data. Particularly for large databases, this can turn into a tedious and costly procedure. Consequently, in this work, we focus on noise detection for database creation. We propose to use different density-based features to distinguish between \"relevant\" and \"unwanted\" (or noisy) parts of writing. Using a 2-class HMM based classifier we get encouraging detection rate of unwanted regions from online handwritten text.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Overwriting repetition and crossing-out detection in online handwritten text\",\"authors\":\"Nilanjana Bhattacharya, Volkmar Frinken, U. Pal, P. Roy\",\"doi\":\"10.1109/ACPR.2015.7486589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise detection in online handwritten text is an important task for data acquisition. Noise occurs in online handwritten text in various ways. For example, crossing out the previously written text due to misspelling, repeated writing of the same stroke several times following a slightly different trajectory, simply writing corrections over other text are very common. Detection of these unwanted regions is a crucial pre-processing step in automatic text recognition. Currently detection and removal/correction of such regions are often done manually after collecting the data. Particularly for large databases, this can turn into a tedious and costly procedure. Consequently, in this work, we focus on noise detection for database creation. We propose to use different density-based features to distinguish between \\\"relevant\\\" and \\\"unwanted\\\" (or noisy) parts of writing. Using a 2-class HMM based classifier we get encouraging detection rate of unwanted regions from online handwritten text.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overwriting repetition and crossing-out detection in online handwritten text
Noise detection in online handwritten text is an important task for data acquisition. Noise occurs in online handwritten text in various ways. For example, crossing out the previously written text due to misspelling, repeated writing of the same stroke several times following a slightly different trajectory, simply writing corrections over other text are very common. Detection of these unwanted regions is a crucial pre-processing step in automatic text recognition. Currently detection and removal/correction of such regions are often done manually after collecting the data. Particularly for large databases, this can turn into a tedious and costly procedure. Consequently, in this work, we focus on noise detection for database creation. We propose to use different density-based features to distinguish between "relevant" and "unwanted" (or noisy) parts of writing. Using a 2-class HMM based classifier we get encouraging detection rate of unwanted regions from online handwritten text.