基于多核和多核架构的大型分子数据的光线追踪和体绘制

A. Knoll, I. Wald, P. Navrátil, M. Papka, K. Gaither
{"title":"基于多核和多核架构的大型分子数据的光线追踪和体绘制","authors":"A. Knoll, I. Wald, P. Navrátil, M. Papka, K. Gaither","doi":"10.1145/2535571.2535594","DOIUrl":null,"url":null,"abstract":"Visualizing large molecular data requires efficient means of rendering millions of data elements that combine glyphs, geometry and volumetric techniques. The geometric and volumetric loads challenge traditional rasterization-based vis methods. Ray casting presents a scalable and memory- efficient alternative, but modern techniques typically rely on GPU-based acceleration to achieve interactive rendering rates. In this paper, we present bnsView, a molecular visualization ray tracing framework that delivers fast volume rendering and ball-and-stick ray casting on both multi-core CPUs and many-core Intel® Xeon Phi™ co-processors, implemented in a SPMD language that generates efficient SIMD vector code for multiple platforms without source modification. We show that our approach running on co- processors is competitive with similar techniques running on GPU accelerators, and we demonstrate large-scale parallel remote visualization from TACC's Stampede supercomputer to large-format display walls using this system.","PeriodicalId":262085,"journal":{"name":"Proceedings of the 8th International Workshop on Ultrascale Visualization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Ray tracing and volume rendering large molecular data on multi-core and many-core architectures\",\"authors\":\"A. Knoll, I. Wald, P. Navrátil, M. Papka, K. Gaither\",\"doi\":\"10.1145/2535571.2535594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizing large molecular data requires efficient means of rendering millions of data elements that combine glyphs, geometry and volumetric techniques. The geometric and volumetric loads challenge traditional rasterization-based vis methods. Ray casting presents a scalable and memory- efficient alternative, but modern techniques typically rely on GPU-based acceleration to achieve interactive rendering rates. In this paper, we present bnsView, a molecular visualization ray tracing framework that delivers fast volume rendering and ball-and-stick ray casting on both multi-core CPUs and many-core Intel® Xeon Phi™ co-processors, implemented in a SPMD language that generates efficient SIMD vector code for multiple platforms without source modification. We show that our approach running on co- processors is competitive with similar techniques running on GPU accelerators, and we demonstrate large-scale parallel remote visualization from TACC's Stampede supercomputer to large-format display walls using this system.\",\"PeriodicalId\":262085,\"journal\":{\"name\":\"Proceedings of the 8th International Workshop on Ultrascale Visualization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Workshop on Ultrascale Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535571.2535594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Ultrascale Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535571.2535594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

可视化大型分子数据需要有效的手段来呈现数百万的数据元素,这些元素结合了字形、几何和体积技术。几何和体积载荷挑战了传统的基于栅格化的可视化方法。光线投射提供了一种可扩展且内存高效的替代方案,但现代技术通常依赖于基于gpu的加速来实现交互式渲染速率。在本文中,我们提出了bnsView,这是一个分子可视化光线跟踪框架,可以在多核cpu和多核Intel®Xeon Phi™协处理器上提供快速的体渲染和球棒光线投射,采用SPMD语言实现,可以在不修改源代码的情况下为多个平台生成高效的SIMD矢量代码。我们证明了在协处理器上运行的方法与在GPU加速器上运行的类似技术具有竞争力,并且我们使用该系统演示了从TACC的Stampede超级计算机到大格式显示墙的大规模并行远程可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ray tracing and volume rendering large molecular data on multi-core and many-core architectures
Visualizing large molecular data requires efficient means of rendering millions of data elements that combine glyphs, geometry and volumetric techniques. The geometric and volumetric loads challenge traditional rasterization-based vis methods. Ray casting presents a scalable and memory- efficient alternative, but modern techniques typically rely on GPU-based acceleration to achieve interactive rendering rates. In this paper, we present bnsView, a molecular visualization ray tracing framework that delivers fast volume rendering and ball-and-stick ray casting on both multi-core CPUs and many-core Intel® Xeon Phi™ co-processors, implemented in a SPMD language that generates efficient SIMD vector code for multiple platforms without source modification. We show that our approach running on co- processors is competitive with similar techniques running on GPU accelerators, and we demonstrate large-scale parallel remote visualization from TACC's Stampede supercomputer to large-format display walls using this system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信