带噪声数据的无监督逆强化学习

A. Surana
{"title":"带噪声数据的无监督逆强化学习","authors":"A. Surana","doi":"10.1109/CDC.2014.7040160","DOIUrl":null,"url":null,"abstract":"In this paper we propose an approach for unsupervised Inverse Reinforcement Learning (IRL) with noisy data using a hidden variable Markov Decision Processes (hMDP) representation. hMDP accounts for observation uncertainty by using a hidden state variable. We develop a nonparametric Bayesian IRL technique for hMDP based on Dirichlet Processes mixture model. We provide an efficient Markov Chain Monte Carlo based sampling algorithm whereby one can automatically cluster noisy data into different behaviors, and estimate the underlying reward parameters per cluster. We demonstrate our approach for unsupervised learning, and prediction and classification of agent behaviors in a simulated surveillance scenario.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unsupervised inverse reinforcement learning with noisy data\",\"authors\":\"A. Surana\",\"doi\":\"10.1109/CDC.2014.7040160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an approach for unsupervised Inverse Reinforcement Learning (IRL) with noisy data using a hidden variable Markov Decision Processes (hMDP) representation. hMDP accounts for observation uncertainty by using a hidden state variable. We develop a nonparametric Bayesian IRL technique for hMDP based on Dirichlet Processes mixture model. We provide an efficient Markov Chain Monte Carlo based sampling algorithm whereby one can automatically cluster noisy data into different behaviors, and estimate the underlying reward parameters per cluster. We demonstrate our approach for unsupervised learning, and prediction and classification of agent behaviors in a simulated surveillance scenario.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7040160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种使用隐变量马尔可夫决策过程(hMDP)表示的无监督逆强化学习(IRL)方法。hMDP通过使用一个隐藏状态变量来解释观测的不确定性。提出了一种基于Dirichlet过程混合模型的非参数贝叶斯IRL技术。我们提供了一种有效的基于马尔可夫链蒙特卡罗的采样算法,可以自动将噪声数据聚类到不同的行为中,并估计每个聚类的潜在奖励参数。我们展示了我们的无监督学习方法,以及在模拟监视场景中对代理行为的预测和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised inverse reinforcement learning with noisy data
In this paper we propose an approach for unsupervised Inverse Reinforcement Learning (IRL) with noisy data using a hidden variable Markov Decision Processes (hMDP) representation. hMDP accounts for observation uncertainty by using a hidden state variable. We develop a nonparametric Bayesian IRL technique for hMDP based on Dirichlet Processes mixture model. We provide an efficient Markov Chain Monte Carlo based sampling algorithm whereby one can automatically cluster noisy data into different behaviors, and estimate the underlying reward parameters per cluster. We demonstrate our approach for unsupervised learning, and prediction and classification of agent behaviors in a simulated surveillance scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信