{"title":"土木结构的长规结构监测","authors":"D. Inaudi, Samuel Vurpillot, E. Udd","doi":"10.1117/12.323420","DOIUrl":null,"url":null,"abstract":"The security of civil engineering works demands a periodical monitoring of the structures. The current methods (such as triangulation, water levels, vibrating strings or mechanical extensometers) are often of tedious application and require the intervention of specialized operators. The resulting complexity and costs limit the frequency of these measurements. The obtained spatial resolution is in general low and only the presence of anomalies in the global behavior urges a deeper and more precise evaluation. There is therefore a real need for a tool allowing an automatic and permanent monitoring from within the structure itself and with high precision and good spatial resolution. In many civil structures like bridges, tunnels and dams, the deformations are the most relevant parameter to be monitored in both short and long-terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the structure's behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the construction phases and in the long term. In the case of beams and bridges, long-gage sensors can be used to evaluate the curvature variations and calculate the horizontal and vertical displacements by double integration of the curvatures.","PeriodicalId":293004,"journal":{"name":"Pacific Northwest Fiber Optic Sensor","volume":"3489 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Long-gauge structural monitoring for civil structures\",\"authors\":\"D. Inaudi, Samuel Vurpillot, E. Udd\",\"doi\":\"10.1117/12.323420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security of civil engineering works demands a periodical monitoring of the structures. The current methods (such as triangulation, water levels, vibrating strings or mechanical extensometers) are often of tedious application and require the intervention of specialized operators. The resulting complexity and costs limit the frequency of these measurements. The obtained spatial resolution is in general low and only the presence of anomalies in the global behavior urges a deeper and more precise evaluation. There is therefore a real need for a tool allowing an automatic and permanent monitoring from within the structure itself and with high precision and good spatial resolution. In many civil structures like bridges, tunnels and dams, the deformations are the most relevant parameter to be monitored in both short and long-terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the structure's behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the construction phases and in the long term. In the case of beams and bridges, long-gage sensors can be used to evaluate the curvature variations and calculate the horizontal and vertical displacements by double integration of the curvatures.\",\"PeriodicalId\":293004,\"journal\":{\"name\":\"Pacific Northwest Fiber Optic Sensor\",\"volume\":\"3489 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Northwest Fiber Optic Sensor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.323420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Northwest Fiber Optic Sensor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.323420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-gauge structural monitoring for civil structures
The security of civil engineering works demands a periodical monitoring of the structures. The current methods (such as triangulation, water levels, vibrating strings or mechanical extensometers) are often of tedious application and require the intervention of specialized operators. The resulting complexity and costs limit the frequency of these measurements. The obtained spatial resolution is in general low and only the presence of anomalies in the global behavior urges a deeper and more precise evaluation. There is therefore a real need for a tool allowing an automatic and permanent monitoring from within the structure itself and with high precision and good spatial resolution. In many civil structures like bridges, tunnels and dams, the deformations are the most relevant parameter to be monitored in both short and long-terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the structure's behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the construction phases and in the long term. In the case of beams and bridges, long-gage sensors can be used to evaluate the curvature variations and calculate the horizontal and vertical displacements by double integration of the curvatures.