基于联合迭代优化的传感器网络分布式降阶估计

Songcen Xu, R. D. Lamare, H. Poor
{"title":"基于联合迭代优化的传感器网络分布式降阶估计","authors":"Songcen Xu, R. D. Lamare, H. Poor","doi":"10.5281/ZENODO.43837","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel distributed reduced-rank scheme and an adaptive algorithm for distributed estimation in wireless sensor networks. The proposed distributed scheme is based on a transformation that performs dimensionality reduction at each agent of the network followed by a reduced-dimension parameter vector. A distributed reduced-rank joint iterative estimation algorithm is developed, which has the ability to achieve significantly reduced communication overhead and improved performance when compared with existing techniques. Simulation results illustrate the advantages of the proposed strategy in terms of convergence rate and mean square error performance.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Distributed reduced-rank estimation based on joint iterative optimization in sensor networks\",\"authors\":\"Songcen Xu, R. D. Lamare, H. Poor\",\"doi\":\"10.5281/ZENODO.43837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel distributed reduced-rank scheme and an adaptive algorithm for distributed estimation in wireless sensor networks. The proposed distributed scheme is based on a transformation that performs dimensionality reduction at each agent of the network followed by a reduced-dimension parameter vector. A distributed reduced-rank joint iterative estimation algorithm is developed, which has the ability to achieve significantly reduced communication overhead and improved performance when compared with existing techniques. Simulation results illustrate the advantages of the proposed strategy in terms of convergence rate and mean square error performance.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

针对无线传感器网络中的分布式估计问题,提出了一种新的分布式降阶方案和自适应算法。所提出的分布式方案基于一种转换,该转换在网络的每个代理上执行降维,然后执行降维参数向量。提出了一种分布式降秩联合迭代估计算法,与现有算法相比,该算法显著降低了通信开销,提高了性能。仿真结果表明了该策略在收敛速度和均方误差性能方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed reduced-rank estimation based on joint iterative optimization in sensor networks
This paper proposes a novel distributed reduced-rank scheme and an adaptive algorithm for distributed estimation in wireless sensor networks. The proposed distributed scheme is based on a transformation that performs dimensionality reduction at each agent of the network followed by a reduced-dimension parameter vector. A distributed reduced-rank joint iterative estimation algorithm is developed, which has the ability to achieve significantly reduced communication overhead and improved performance when compared with existing techniques. Simulation results illustrate the advantages of the proposed strategy in terms of convergence rate and mean square error performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信