关于D-ary范诺码

F. Cicalese, Eros Rossi
{"title":"关于D-ary范诺码","authors":"F. Cicalese, Eros Rossi","doi":"10.1109/ISIT44484.2020.9174023","DOIUrl":null,"url":null,"abstract":"We define a D-ary Fano code based on a natural generalization of the splitting criterion of the binary Fano code to the case of D-ary code. We show that this choice allows for an efficient computation of the code tree and also leads to a strong guarantee with respect to the redundancy of the resulting code: for any source distribution p = p1,… pn1) for D = 2, 3,4 the resulting code satisfies\\begin{equation*}\\bar L - {H_D}({\\mathbf{p}}) \\leq 1 - {p_{\\min }}, \\tag{1}\\end{equation*}where $\\bar L$ is the average codeword length, pmin = mini pi, and ${H_D}({\\mathbf{p}}) = \\sum\\nolimits_{i = 1}^n {{p_i}{{\\log }_D}\\frac{1}{{{p_i}}}} $ (the D-ary entropy);2) inequality (1) holds for every D ≥ 2 whenever every internal node has exactly D children in the code tree produced by our construction.We also formulate a conjecture on the basic step applied by our algorithm in each internal node of the code tree, that, if true, would imply that the bound in (1) is actually achieved for all D ≥ 2 without the restriction of item 2.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On D-ary Fano Codes\",\"authors\":\"F. Cicalese, Eros Rossi\",\"doi\":\"10.1109/ISIT44484.2020.9174023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a D-ary Fano code based on a natural generalization of the splitting criterion of the binary Fano code to the case of D-ary code. We show that this choice allows for an efficient computation of the code tree and also leads to a strong guarantee with respect to the redundancy of the resulting code: for any source distribution p = p1,… pn1) for D = 2, 3,4 the resulting code satisfies\\\\begin{equation*}\\\\bar L - {H_D}({\\\\mathbf{p}}) \\\\leq 1 - {p_{\\\\min }}, \\\\tag{1}\\\\end{equation*}where $\\\\bar L$ is the average codeword length, pmin = mini pi, and ${H_D}({\\\\mathbf{p}}) = \\\\sum\\\\nolimits_{i = 1}^n {{p_i}{{\\\\log }_D}\\\\frac{1}{{{p_i}}}} $ (the D-ary entropy);2) inequality (1) holds for every D ≥ 2 whenever every internal node has exactly D children in the code tree produced by our construction.We also formulate a conjecture on the basic step applied by our algorithm in each internal node of the code tree, that, if true, would imply that the bound in (1) is actually achieved for all D ≥ 2 without the restriction of item 2.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将二进制法诺码的分裂准则自然推广到d - 1码的情况,定义了d - 1法诺码。我们表明,这种选择允许代码树的有效计算,也导致了对结果代码冗余的强有力保证:对于任何源分布p = p1,…pn1),对于D = 2,3,4,得到的代码满足\begin{equation*}\bar L - {H_D}({\mathbf{p}}) \leq 1 - {p_{\min }}, \tag{1}\end{equation*},其中$\bar L$是平均码字长度,pmin = mini pi, ${H_D}({\mathbf{p}}) = \sum\nolimits_{i = 1}^n {{p_i}{{\log }_D}\frac{1}{{{p_i}}}} $ (D-ary熵);2)不等式(1)对于由我们的构造产生的代码树中每个内部节点恰好有D个子节点时,当D≥2时成立。我们还对我们的算法在代码树的每个内部节点上应用的基本步骤提出了一个猜想,如果该猜想成立,则意味着对于所有D≥2而不受第2项的限制,实际上实现了(1)中的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On D-ary Fano Codes
We define a D-ary Fano code based on a natural generalization of the splitting criterion of the binary Fano code to the case of D-ary code. We show that this choice allows for an efficient computation of the code tree and also leads to a strong guarantee with respect to the redundancy of the resulting code: for any source distribution p = p1,… pn1) for D = 2, 3,4 the resulting code satisfies\begin{equation*}\bar L - {H_D}({\mathbf{p}}) \leq 1 - {p_{\min }}, \tag{1}\end{equation*}where $\bar L$ is the average codeword length, pmin = mini pi, and ${H_D}({\mathbf{p}}) = \sum\nolimits_{i = 1}^n {{p_i}{{\log }_D}\frac{1}{{{p_i}}}} $ (the D-ary entropy);2) inequality (1) holds for every D ≥ 2 whenever every internal node has exactly D children in the code tree produced by our construction.We also formulate a conjecture on the basic step applied by our algorithm in each internal node of the code tree, that, if true, would imply that the bound in (1) is actually achieved for all D ≥ 2 without the restriction of item 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信