使用频率分析和现成设备进行活动检测:从加速度计数据进行跌倒检测

Sebastian D. Bersch, Christian M. J. Chislett, D. Azzi, R. Khusainov, J. Briggs
{"title":"使用频率分析和现成设备进行活动检测:从加速度计数据进行跌倒检测","authors":"Sebastian D. Bersch, Christian M. J. Chislett, D. Azzi, R. Khusainov, J. Briggs","doi":"10.4108/ICST.PERVASIVEHEALTH.2011.246119","DOIUrl":null,"url":null,"abstract":"Increasingly, applications of technology are being developed to provide care to elderly and vulnerable people living alone. This paper looks at using sensors to monitor a person's wellbeing. The paper attempts to recognise and distinguish falling, sitting and walking activities from accelerometer data. Fast Fourier Transformation (FFT) is used to extract information from collected data. The low-cost accelerometer is part of a Texas Instruments watch. Our experiments focus on lower sampling rates than those used elsewhere in the literature. We show that a sampling rate of 10Hz from a wrist-worn device does not reliably distinguish between a fall and merely sitting down.","PeriodicalId":444978,"journal":{"name":"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Activity detection using frequency analysis and off-the-shelf devices: Fall detection from accelerometer data\",\"authors\":\"Sebastian D. Bersch, Christian M. J. Chislett, D. Azzi, R. Khusainov, J. Briggs\",\"doi\":\"10.4108/ICST.PERVASIVEHEALTH.2011.246119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasingly, applications of technology are being developed to provide care to elderly and vulnerable people living alone. This paper looks at using sensors to monitor a person's wellbeing. The paper attempts to recognise and distinguish falling, sitting and walking activities from accelerometer data. Fast Fourier Transformation (FFT) is used to extract information from collected data. The low-cost accelerometer is part of a Texas Instruments watch. Our experiments focus on lower sampling rates than those used elsewhere in the literature. We show that a sampling rate of 10Hz from a wrist-worn device does not reliably distinguish between a fall and merely sitting down.\",\"PeriodicalId\":444978,\"journal\":{\"name\":\"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2011.246119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2011.246119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

正在越来越多地开发技术应用,为独居的老年人和弱势群体提供护理。这篇论文着眼于使用传感器来监测一个人的健康状况。本文试图从加速度计数据中识别和区分跌倒、坐着和行走的活动。利用快速傅里叶变换(FFT)从采集的数据中提取信息。这种低成本加速度计是德州仪器手表的一部分。我们的实验集中在比文献中其他地方使用的更低的采样率上。我们表明,从手腕上佩戴的设备中采样率为10Hz并不能可靠地区分跌倒和仅仅坐下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity detection using frequency analysis and off-the-shelf devices: Fall detection from accelerometer data
Increasingly, applications of technology are being developed to provide care to elderly and vulnerable people living alone. This paper looks at using sensors to monitor a person's wellbeing. The paper attempts to recognise and distinguish falling, sitting and walking activities from accelerometer data. Fast Fourier Transformation (FFT) is used to extract information from collected data. The low-cost accelerometer is part of a Texas Instruments watch. Our experiments focus on lower sampling rates than those used elsewhere in the literature. We show that a sampling rate of 10Hz from a wrist-worn device does not reliably distinguish between a fall and merely sitting down.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信