Sebastian D. Bersch, Christian M. J. Chislett, D. Azzi, R. Khusainov, J. Briggs
{"title":"使用频率分析和现成设备进行活动检测:从加速度计数据进行跌倒检测","authors":"Sebastian D. Bersch, Christian M. J. Chislett, D. Azzi, R. Khusainov, J. Briggs","doi":"10.4108/ICST.PERVASIVEHEALTH.2011.246119","DOIUrl":null,"url":null,"abstract":"Increasingly, applications of technology are being developed to provide care to elderly and vulnerable people living alone. This paper looks at using sensors to monitor a person's wellbeing. The paper attempts to recognise and distinguish falling, sitting and walking activities from accelerometer data. Fast Fourier Transformation (FFT) is used to extract information from collected data. The low-cost accelerometer is part of a Texas Instruments watch. Our experiments focus on lower sampling rates than those used elsewhere in the literature. We show that a sampling rate of 10Hz from a wrist-worn device does not reliably distinguish between a fall and merely sitting down.","PeriodicalId":444978,"journal":{"name":"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Activity detection using frequency analysis and off-the-shelf devices: Fall detection from accelerometer data\",\"authors\":\"Sebastian D. Bersch, Christian M. J. Chislett, D. Azzi, R. Khusainov, J. Briggs\",\"doi\":\"10.4108/ICST.PERVASIVEHEALTH.2011.246119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasingly, applications of technology are being developed to provide care to elderly and vulnerable people living alone. This paper looks at using sensors to monitor a person's wellbeing. The paper attempts to recognise and distinguish falling, sitting and walking activities from accelerometer data. Fast Fourier Transformation (FFT) is used to extract information from collected data. The low-cost accelerometer is part of a Texas Instruments watch. Our experiments focus on lower sampling rates than those used elsewhere in the literature. We show that a sampling rate of 10Hz from a wrist-worn device does not reliably distinguish between a fall and merely sitting down.\",\"PeriodicalId\":444978,\"journal\":{\"name\":\"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2011.246119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2011.246119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activity detection using frequency analysis and off-the-shelf devices: Fall detection from accelerometer data
Increasingly, applications of technology are being developed to provide care to elderly and vulnerable people living alone. This paper looks at using sensors to monitor a person's wellbeing. The paper attempts to recognise and distinguish falling, sitting and walking activities from accelerometer data. Fast Fourier Transformation (FFT) is used to extract information from collected data. The low-cost accelerometer is part of a Texas Instruments watch. Our experiments focus on lower sampling rates than those used elsewhere in the literature. We show that a sampling rate of 10Hz from a wrist-worn device does not reliably distinguish between a fall and merely sitting down.