广义加权Bergman空间中的积分表示

K. Avetisyan
{"title":"广义加权Bergman空间中的积分表示","authors":"K. Avetisyan","doi":"10.1080/02781070500327576","DOIUrl":null,"url":null,"abstract":"We introduce fractional -integro-differentiation for functions holomorphic in the upper half-plane. It gives us a tool to construct Cauchy-Bergman type kernels associated with the weights Some estimates of the kernels enable us to obtain reproducing integral formulas for Bergman spaces with general weights which may decrease to zero with arbitrary rate near the origin. Accordingly, such Bergman functions have arbitrary growth near the real axis.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Integral representations in general weighted Bergman spaces\",\"authors\":\"K. Avetisyan\",\"doi\":\"10.1080/02781070500327576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce fractional -integro-differentiation for functions holomorphic in the upper half-plane. It gives us a tool to construct Cauchy-Bergman type kernels associated with the weights Some estimates of the kernels enable us to obtain reproducing integral formulas for Bergman spaces with general weights which may decrease to zero with arbitrary rate near the origin. Accordingly, such Bergman functions have arbitrary growth near the real axis.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500327576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500327576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

引入了上半平面全纯函数的分数阶积分微分。它给了我们一个构造与权相关的Cauchy-Bergman型核的工具。核的一些估计使我们能够得到具有一般权的Bergman空间的再现积分公式,它可能在原点附近以任意速率降为零。因此,这样的Bergman函数在实轴附近有任意增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral representations in general weighted Bergman spaces
We introduce fractional -integro-differentiation for functions holomorphic in the upper half-plane. It gives us a tool to construct Cauchy-Bergman type kernels associated with the weights Some estimates of the kernels enable us to obtain reproducing integral formulas for Bergman spaces with general weights which may decrease to zero with arbitrary rate near the origin. Accordingly, such Bergman functions have arbitrary growth near the real axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信