多输入非线性控制系统的一倍线性化

F. Nicolau, Shunjie Li, W. Respondek
{"title":"多输入非线性控制系统的一倍线性化","authors":"F. Nicolau, Shunjie Li, W. Respondek","doi":"10.23919/CHICC.2018.8483716","DOIUrl":null,"url":null,"abstract":"In this paper we study the feedback linearization of multi-input control-affine systems via a particular class of nonregular feedback transformations. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold reduction of a suitably chosen control. That problem can be seen as the dual of the linearization via invertible one-fold prolongation of a suitably chosen control (which is the simplest dynamic feedback). We discuss in detail similarities and differences of both problems. We propose necessary and sufficient conditions describing the class of systems linearizable via a one-fold reduction, and discuss when the proposed conditions can be verified (by differentiation and algebraic operations only). We provide a normal form and illustrate our results by several examples.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Input Nonlinear Control Systems Linearizable via One-Fold Reduction\",\"authors\":\"F. Nicolau, Shunjie Li, W. Respondek\",\"doi\":\"10.23919/CHICC.2018.8483716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the feedback linearization of multi-input control-affine systems via a particular class of nonregular feedback transformations. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold reduction of a suitably chosen control. That problem can be seen as the dual of the linearization via invertible one-fold prolongation of a suitably chosen control (which is the simplest dynamic feedback). We discuss in detail similarities and differences of both problems. We propose necessary and sufficient conditions describing the class of systems linearizable via a one-fold reduction, and discuss when the proposed conditions can be verified (by differentiation and algebraic operations only). We provide a normal form and illustrate our results by several examples.\",\"PeriodicalId\":158442,\"journal\":{\"name\":\"2018 37th Chinese Control Conference (CCC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CHICC.2018.8483716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过一类特殊的非正则反馈变换研究了多输入控制仿射系统的反馈线性化问题。我们给出了一个完整的几何表征系统成为静态反馈线性化后,一个适当选择的控制的一倍减少。这个问题可以看作是线性化的对偶,通过可逆的一倍延长适当选择的控制(这是最简单的动态反馈)。我们详细讨论了这两个问题的异同。我们提出了描述一类可通过一倍约化线性化的系统的充分必要条件,并讨论了所提出的条件何时可以被验证(仅通过微分和代数运算)。我们提供了一个标准形式,并通过几个例子说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Input Nonlinear Control Systems Linearizable via One-Fold Reduction
In this paper we study the feedback linearization of multi-input control-affine systems via a particular class of nonregular feedback transformations. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold reduction of a suitably chosen control. That problem can be seen as the dual of the linearization via invertible one-fold prolongation of a suitably chosen control (which is the simplest dynamic feedback). We discuss in detail similarities and differences of both problems. We propose necessary and sufficient conditions describing the class of systems linearizable via a one-fold reduction, and discuss when the proposed conditions can be verified (by differentiation and algebraic operations only). We provide a normal form and illustrate our results by several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信