带有噪声二进制输入的交互式对象分割

Gregory H. Canal, S. Manivasagam, Shaoheng Liang, C. Rozell
{"title":"带有噪声二进制输入的交互式对象分割","authors":"Gregory H. Canal, S. Manivasagam, Shaoheng Liang, C. Rozell","doi":"10.1109/GLOBALSIP.2018.8646574","DOIUrl":null,"url":null,"abstract":"We consider the problem of interactively specifying an object segment in an image in an efficient and robust manner via binary inputs corrupted by noise. Our method frames interactive segmentation as a communications system with feedback and leverages a simple channel coding scheme to allow a user to select a segment from an ordered lexicon of segments for a given image. We propose an intuitive lexicon based on ellipses (EllipseLex) and evaluate its ability to specify desired object segments over increasing numbers of inputs at various levels of input noise, and compare it to a baseline algorithm. After evaluating the performance of each method on the Microsoft Common Objects in Context (MS-COCO) dataset using several metrics, we find that our method exhibits competitive performance when specifying real-world objects in images.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INTERACTIVE OBJECT SEGMENTATION WITH NOISY BINARY INPUTS\",\"authors\":\"Gregory H. Canal, S. Manivasagam, Shaoheng Liang, C. Rozell\",\"doi\":\"10.1109/GLOBALSIP.2018.8646574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of interactively specifying an object segment in an image in an efficient and robust manner via binary inputs corrupted by noise. Our method frames interactive segmentation as a communications system with feedback and leverages a simple channel coding scheme to allow a user to select a segment from an ordered lexicon of segments for a given image. We propose an intuitive lexicon based on ellipses (EllipseLex) and evaluate its ability to specify desired object segments over increasing numbers of inputs at various levels of input noise, and compare it to a baseline algorithm. After evaluating the performance of each method on the Microsoft Common Objects in Context (MS-COCO) dataset using several metrics, we find that our method exhibits competitive performance when specifying real-world objects in images.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBALSIP.2018.8646574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了通过被噪声破坏的二进制输入,以一种高效和鲁棒的方式交互式地指定图像中的目标段的问题。我们的方法将交互式分割作为具有反馈的通信系统,并利用简单的信道编码方案,允许用户从给定图像的有序片段词典中选择一个片段。我们提出了一个基于椭圆的直观词典(EllipseLex),并评估了它在不同输入噪声水平下指定所需对象段的能力,并将其与基线算法进行比较。在使用几个指标评估了每种方法在微软公共对象上下文(MS-COCO)数据集上的性能后,我们发现我们的方法在指定图像中的真实对象时表现出具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTERACTIVE OBJECT SEGMENTATION WITH NOISY BINARY INPUTS
We consider the problem of interactively specifying an object segment in an image in an efficient and robust manner via binary inputs corrupted by noise. Our method frames interactive segmentation as a communications system with feedback and leverages a simple channel coding scheme to allow a user to select a segment from an ordered lexicon of segments for a given image. We propose an intuitive lexicon based on ellipses (EllipseLex) and evaluate its ability to specify desired object segments over increasing numbers of inputs at various levels of input noise, and compare it to a baseline algorithm. After evaluating the performance of each method on the Microsoft Common Objects in Context (MS-COCO) dataset using several metrics, we find that our method exhibits competitive performance when specifying real-world objects in images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信