实现20个Izhikevich行为的紧凑现象学数字神经元

C. Frenkel, J. Legat, D. Bol
{"title":"实现20个Izhikevich行为的紧凑现象学数字神经元","authors":"C. Frenkel, J. Legat, D. Bol","doi":"10.1109/BIOCAS.2017.8325231","DOIUrl":null,"url":null,"abstract":"The possible end of Moore's law drives a growing interest for a paradigm shift from classical von Neumann to bio-inspired computing architectures. Toward this objective, the field of neuromorphic engineering studies spike-based information processing with neuron and synapse elements. While analog circuit design allows to emulate the neuron biophysics with only a few transistors, digital circuit design shows high potential to leverage technology scaling with short design times at the expense of limited area efficiency. As recent developments in synapse implementation allow to reach densities as low as 1μm2 per synapse, it is now crucial to optimize the neuron area. In order to push digital design to compact implementations and take advantage of nanoscale CMOS technologies, we developed a phenomenological digital neuron that implements the full repertoire of the 20 Izhikevich behaviors with time constants configurable from biological-to accelerated-time. The proposed implementation occupies only 574μm2 in 28nm FDSOI CMOS.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A compact phenomenological digital neuron implementing the 20 Izhikevich behaviors\",\"authors\":\"C. Frenkel, J. Legat, D. Bol\",\"doi\":\"10.1109/BIOCAS.2017.8325231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possible end of Moore's law drives a growing interest for a paradigm shift from classical von Neumann to bio-inspired computing architectures. Toward this objective, the field of neuromorphic engineering studies spike-based information processing with neuron and synapse elements. While analog circuit design allows to emulate the neuron biophysics with only a few transistors, digital circuit design shows high potential to leverage technology scaling with short design times at the expense of limited area efficiency. As recent developments in synapse implementation allow to reach densities as low as 1μm2 per synapse, it is now crucial to optimize the neuron area. In order to push digital design to compact implementations and take advantage of nanoscale CMOS technologies, we developed a phenomenological digital neuron that implements the full repertoire of the 20 Izhikevich behaviors with time constants configurable from biological-to accelerated-time. The proposed implementation occupies only 574μm2 in 28nm FDSOI CMOS.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摩尔定律可能的终结,促使人们对从经典冯·诺伊曼到生物启发的计算架构的范式转变越来越感兴趣。为了实现这一目标,神经形态工程领域研究了基于神经元和突触元素的基于spike的信息处理。虽然模拟电路设计允许仅用几个晶体管模拟神经元生物物理,但数字电路设计显示出高潜力,以有限的面积效率为代价,在短设计时间内利用技术缩放。随着突触实现的最新发展,每个突触的密度低至1μm2,现在优化神经元区域是至关重要的。为了将数字设计推向紧凑的实现并利用纳米级CMOS技术,我们开发了一种现象学数字神经元,该神经元实现了从生物时间到加速时间可配置的20种Izhikevich行为的全部功能。该实现在28nm FDSOI CMOS中仅占用574μm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compact phenomenological digital neuron implementing the 20 Izhikevich behaviors
The possible end of Moore's law drives a growing interest for a paradigm shift from classical von Neumann to bio-inspired computing architectures. Toward this objective, the field of neuromorphic engineering studies spike-based information processing with neuron and synapse elements. While analog circuit design allows to emulate the neuron biophysics with only a few transistors, digital circuit design shows high potential to leverage technology scaling with short design times at the expense of limited area efficiency. As recent developments in synapse implementation allow to reach densities as low as 1μm2 per synapse, it is now crucial to optimize the neuron area. In order to push digital design to compact implementations and take advantage of nanoscale CMOS technologies, we developed a phenomenological digital neuron that implements the full repertoire of the 20 Izhikevich behaviors with time constants configurable from biological-to accelerated-time. The proposed implementation occupies only 574μm2 in 28nm FDSOI CMOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信