自主、独立地管理gpu上的动态图形

Martin Winter, Rhaleb Zayer, M. Steinberger
{"title":"自主、独立地管理gpu上的动态图形","authors":"Martin Winter, Rhaleb Zayer, M. Steinberger","doi":"10.1109/HPEC.2017.8091058","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new, dynamic graph data structure, built to deliver high update rates while keeping a low memory footprint using autonomous memory management directly on the GPU. By transferring the memory management to the GPU, efficient updating of the graph structure and fast initialization times are enabled as no additional memory allocation calls or reallocation procedures are necessary since they are handled directly on the device. In comparison to previous work, this optimized approach allows for significantly lower initialization times (up to 300× faster) and much higher update rates for significant changes to the graph structure and equal rates for small changes. The framework provides different update implementations tailored specifically to different graph properties, enabling over 100 million of updates per second and keeping tens of millions of vertices and hundreds of millions of edges in memory without transferring data back and forth between device and host.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Autonomous, independent management of dynamic graphs on GPUs\",\"authors\":\"Martin Winter, Rhaleb Zayer, M. Steinberger\",\"doi\":\"10.1109/HPEC.2017.8091058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new, dynamic graph data structure, built to deliver high update rates while keeping a low memory footprint using autonomous memory management directly on the GPU. By transferring the memory management to the GPU, efficient updating of the graph structure and fast initialization times are enabled as no additional memory allocation calls or reallocation procedures are necessary since they are handled directly on the device. In comparison to previous work, this optimized approach allows for significantly lower initialization times (up to 300× faster) and much higher update rates for significant changes to the graph structure and equal rates for small changes. The framework provides different update implementations tailored specifically to different graph properties, enabling over 100 million of updates per second and keeping tens of millions of vertices and hundreds of millions of edges in memory without transferring data back and forth between device and host.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们提出了一种新的动态图形数据结构,该结构旨在提供高更新率,同时直接在GPU上使用自主内存管理来保持低内存占用。通过将内存管理转移到GPU,可以有效地更新图形结构和快速初始化时间,因为不需要额外的内存分配调用或重新分配过程,因为它们直接在设备上处理。与以前的工作相比,这种优化的方法允许更低的初始化时间(最多快300倍)和更高的更新率,用于对图结构的重大更改和对小更改的相同速率。该框架提供了针对不同图形属性量身定制的不同更新实现,支持每秒超过1亿次更新,并在内存中保留数千万个顶点和数亿个边,而无需在设备和主机之间来回传输数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous, independent management of dynamic graphs on GPUs
In this paper, we present a new, dynamic graph data structure, built to deliver high update rates while keeping a low memory footprint using autonomous memory management directly on the GPU. By transferring the memory management to the GPU, efficient updating of the graph structure and fast initialization times are enabled as no additional memory allocation calls or reallocation procedures are necessary since they are handled directly on the device. In comparison to previous work, this optimized approach allows for significantly lower initialization times (up to 300× faster) and much higher update rates for significant changes to the graph structure and equal rates for small changes. The framework provides different update implementations tailored specifically to different graph properties, enabling over 100 million of updates per second and keeping tens of millions of vertices and hundreds of millions of edges in memory without transferring data back and forth between device and host.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信