多样性增强凝聚算法及其在内窥镜三维运动跟踪中的应用

Xióngbiao Luó, Ying Wan, Xiangjian He, Jie Yang, K. Mori
{"title":"多样性增强凝聚算法及其在内窥镜三维运动跟踪中的应用","authors":"Xióngbiao Luó, Ying Wan, Xiangjian He, Jie Yang, K. Mori","doi":"10.1109/CVPR.2014.163","DOIUrl":null,"url":null,"abstract":"The paper proposes a diversity-enhanced condensation algorithm to address the particle impoverishment problem which stochastic filtering usually suffers from. The particle diversity plays an important role as it affects the performance of filtering. Although the condensation algorithm is widely used in computer vision, it easily gets trapped in local minima due to the particle degeneracy. We introduce a modified evolutionary computing method, adaptive differential evolution, to resolve the particle impoverishment under a proper size of particle population. We apply our proposed method to endoscope tracking for estimating three-dimensional motion of the endoscopic camera. The experimental results demonstrate that our proposed method offers more robust and accurate tracking than previous methods. The current tracking smoothness and error were significantly reduced from (3.7, 4.8) to (2.3 mm, 3.2 mm), which approximates the clinical requirement of 3.0 mm.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Diversity-Enhanced Condensation Algorithm and Its Application for Robust and Accurate Endoscope Three-Dimensional Motion Tracking\",\"authors\":\"Xióngbiao Luó, Ying Wan, Xiangjian He, Jie Yang, K. Mori\",\"doi\":\"10.1109/CVPR.2014.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a diversity-enhanced condensation algorithm to address the particle impoverishment problem which stochastic filtering usually suffers from. The particle diversity plays an important role as it affects the performance of filtering. Although the condensation algorithm is widely used in computer vision, it easily gets trapped in local minima due to the particle degeneracy. We introduce a modified evolutionary computing method, adaptive differential evolution, to resolve the particle impoverishment under a proper size of particle population. We apply our proposed method to endoscope tracking for estimating three-dimensional motion of the endoscopic camera. The experimental results demonstrate that our proposed method offers more robust and accurate tracking than previous methods. The current tracking smoothness and error were significantly reduced from (3.7, 4.8) to (2.3 mm, 3.2 mm), which approximates the clinical requirement of 3.0 mm.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对随机滤波中存在的粒子贫困化问题,提出了一种多样性增强凝聚算法。粒子多样性是影响过滤性能的重要因素。虽然凝聚算法在计算机视觉中得到了广泛的应用,但由于粒子的简并性,它很容易陷入局部极小值。提出了一种改进的进化计算方法——自适应差分进化,以解决在适当的粒子种群规模下的粒子贫困化问题。我们将该方法应用于内窥镜跟踪,用于估计内窥镜相机的三维运动。实验结果表明,该方法具有较好的鲁棒性和准确性。电流跟踪平滑度和误差从(3.7,4.8)显著降低到(2.3 mm, 3.2 mm),接近临床要求的3.0 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity-Enhanced Condensation Algorithm and Its Application for Robust and Accurate Endoscope Three-Dimensional Motion Tracking
The paper proposes a diversity-enhanced condensation algorithm to address the particle impoverishment problem which stochastic filtering usually suffers from. The particle diversity plays an important role as it affects the performance of filtering. Although the condensation algorithm is widely used in computer vision, it easily gets trapped in local minima due to the particle degeneracy. We introduce a modified evolutionary computing method, adaptive differential evolution, to resolve the particle impoverishment under a proper size of particle population. We apply our proposed method to endoscope tracking for estimating three-dimensional motion of the endoscopic camera. The experimental results demonstrate that our proposed method offers more robust and accurate tracking than previous methods. The current tracking smoothness and error were significantly reduced from (3.7, 4.8) to (2.3 mm, 3.2 mm), which approximates the clinical requirement of 3.0 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信