cnn融合航拍图像中建筑物检测对建筑物检测的挑战

Rémi Delassus, R. Giot
{"title":"cnn融合航拍图像中建筑物检测对建筑物检测的挑战","authors":"Rémi Delassus, R. Giot","doi":"10.1109/CVPRW.2018.00044","DOIUrl":null,"url":null,"abstract":"This paper presents our contribution to the DeepGlobe Building Detection Challenge. We enhanced the SpaceNet Challenge winning solution by proposing a new fusion strategy based on a deep combiner using segmentation both results of different CNN and input data to segment. Segmentation results for all cities have been significantly improved (between 1% improvement over the baseline for the smallest one to more than 7% for the biggest one). The separation of adjacent buildings should be the next enhancement made to the solution.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"CNNs Fusion for Building Detection in Aerial Images for the Building Detection Challenge\",\"authors\":\"Rémi Delassus, R. Giot\",\"doi\":\"10.1109/CVPRW.2018.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our contribution to the DeepGlobe Building Detection Challenge. We enhanced the SpaceNet Challenge winning solution by proposing a new fusion strategy based on a deep combiner using segmentation both results of different CNN and input data to segment. Segmentation results for all cities have been significantly improved (between 1% improvement over the baseline for the smallest one to more than 7% for the biggest one). The separation of adjacent buildings should be the next enhancement made to the solution.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了我们对DeepGlobe建筑检测挑战赛的贡献。我们提出了一种新的基于深度组合器的融合策略,利用不同CNN的结果和输入数据进行分割,从而增强了SpaceNet挑战赛的获胜方案。所有城市的分割结果都得到了显著改善(最小的城市比基线提高了1%,最大的城市提高了7%以上)。相邻建筑的分离应该是解决方案的下一个改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNNs Fusion for Building Detection in Aerial Images for the Building Detection Challenge
This paper presents our contribution to the DeepGlobe Building Detection Challenge. We enhanced the SpaceNet Challenge winning solution by proposing a new fusion strategy based on a deep combiner using segmentation both results of different CNN and input data to segment. Segmentation results for all cities have been significantly improved (between 1% improvement over the baseline for the smallest one to more than 7% for the biggest one). The separation of adjacent buildings should be the next enhancement made to the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信