合谋安全指纹识别和B/sub 2/-序列

G. Cohen, S. Litsyn, G. Zémor
{"title":"合谋安全指纹识别和B/sub 2/-序列","authors":"G. Cohen, S. Litsyn, G. Zémor","doi":"10.1109/ISIT.2000.866540","DOIUrl":null,"url":null,"abstract":"We discuss a strategy initiated by Boneh and Shaw (see IEEE Trans. Inform. Theory, vol.44, p.1897-1905, 1998) for collusion-secure fingerprinting. We show that under this strategy, finding fingerprinting schemes that resist coalitions of two users amounts to finding B/sub 2/-sequences of binary vectors. A sequence of vectors v/sub 1/, v/sub 2/,..., v/sub n/ is a B/sub 2/-sequence if all sums v/sub i/+v/sub j/, 1/spl les/i/spl les/j/spl les/n, are different: the associated extremal set-theoretic problem is what is the maximal size of a B/sub 2/-sequence? We shed new light on this old combinatorial problem and improve on previously known upper bounds.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collusion-secure fingerprinting and B/sub 2/-sequences\",\"authors\":\"G. Cohen, S. Litsyn, G. Zémor\",\"doi\":\"10.1109/ISIT.2000.866540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a strategy initiated by Boneh and Shaw (see IEEE Trans. Inform. Theory, vol.44, p.1897-1905, 1998) for collusion-secure fingerprinting. We show that under this strategy, finding fingerprinting schemes that resist coalitions of two users amounts to finding B/sub 2/-sequences of binary vectors. A sequence of vectors v/sub 1/, v/sub 2/,..., v/sub n/ is a B/sub 2/-sequence if all sums v/sub i/+v/sub j/, 1/spl les/i/spl les/j/spl les/n, are different: the associated extremal set-theoretic problem is what is the maximal size of a B/sub 2/-sequence? We shed new light on this old combinatorial problem and improve on previously known upper bounds.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了Boneh和Shaw提出的策略(参见IEEE Trans)。通知。理论,vol.44, p.1897-1905, 1998)共谋安全指纹。我们表明,在这种策略下,找到抵抗两个用户联合的指纹识别方案相当于找到二进制向量的B/sub 2/-序列。向量v/下标1/,v/下标2/,…的序列, v/下标n/是一个B/下标2/-序列,如果所有的和v/下标i/+v/下标j/, 1/spl les/i/spl les/j/spl les/n都是不同的:相关的极值集论问题是B/下标2/-序列的最大大小是多少?我们对这个古老的组合问题给出了新的解释,并且改进了之前已知的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collusion-secure fingerprinting and B/sub 2/-sequences
We discuss a strategy initiated by Boneh and Shaw (see IEEE Trans. Inform. Theory, vol.44, p.1897-1905, 1998) for collusion-secure fingerprinting. We show that under this strategy, finding fingerprinting schemes that resist coalitions of two users amounts to finding B/sub 2/-sequences of binary vectors. A sequence of vectors v/sub 1/, v/sub 2/,..., v/sub n/ is a B/sub 2/-sequence if all sums v/sub i/+v/sub j/, 1/spl les/i/spl les/j/spl les/n, are different: the associated extremal set-theoretic problem is what is the maximal size of a B/sub 2/-sequence? We shed new light on this old combinatorial problem and improve on previously known upper bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信