基于天线耦合AlGaN/GaN hemt的太赫兹检测模块

Y. F. Zhu, Q. Ding, J. F. Zhang, Y. Shangguan, L. Xiang, J. D. Sun, H. Qin
{"title":"基于天线耦合AlGaN/GaN hemt的太赫兹检测模块","authors":"Y. F. Zhu, Q. Ding, J. F. Zhang, Y. Shangguan, L. Xiang, J. D. Sun, H. Qin","doi":"10.1117/12.2664533","DOIUrl":null,"url":null,"abstract":"To accommodate variable terahertz application situations, a compact, high-sensitivity and room-temperature terahertz detection module is designed and demonstrated. The detection module with a volume of less than 350 cm3 integrates a quasi-optically coupled terahertz detector, complementary-metal-oxide-semiconductor-based (CMOS-based) voltage amplifier circuit and bias circuit. An antenna-coupled AlGaN/GaN high-electron-mobility transistor (HEMT) are designed to detect terahertz waves by using self-mixing mechanism. The electrical signal from the detector chip is amplified by a voltage amplifier circuit. The amplifier circuit’s voltage gain can be adjusted from 100 to 700 to accommodate different requirements. The bias circuit provides bias voltage to the gate of the detector. Ability to detect both continuous and pulsed terahertz waves by the module is demonstrated. Under a coherent continuous terahertz irradiation from 0.73 to 1.13 THz, an average noise-equivalent power (NEP) of 23.6 pW/ √ Hz, a maximum optical responsivity of 1281 V/W (w/o Gain) and a minimum NEP of 15.3 pW/ √ Hz are achieved. Under a 4.3 THz pulsed radiation from quantum cascade laser (QCL), the module has a peak optical responsivity of 26 V/W (with Gain = 700) and a NEP of 567 nW/ √ Hz. The rise time of the output signal is 1.14 μs and the fall time is 0.78 μs when the module is operated at a maximum amplification gain of 700 and 6 kHz modulation frequency. To further enhance the sensitivity of the detection module, the design of the detector and the noise of the circuit need to be considered.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"12505 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz detection module based on antenna-coupled AlGaN/GaN HEMTs\",\"authors\":\"Y. F. Zhu, Q. Ding, J. F. Zhang, Y. Shangguan, L. Xiang, J. D. Sun, H. Qin\",\"doi\":\"10.1117/12.2664533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To accommodate variable terahertz application situations, a compact, high-sensitivity and room-temperature terahertz detection module is designed and demonstrated. The detection module with a volume of less than 350 cm3 integrates a quasi-optically coupled terahertz detector, complementary-metal-oxide-semiconductor-based (CMOS-based) voltage amplifier circuit and bias circuit. An antenna-coupled AlGaN/GaN high-electron-mobility transistor (HEMT) are designed to detect terahertz waves by using self-mixing mechanism. The electrical signal from the detector chip is amplified by a voltage amplifier circuit. The amplifier circuit’s voltage gain can be adjusted from 100 to 700 to accommodate different requirements. The bias circuit provides bias voltage to the gate of the detector. Ability to detect both continuous and pulsed terahertz waves by the module is demonstrated. Under a coherent continuous terahertz irradiation from 0.73 to 1.13 THz, an average noise-equivalent power (NEP) of 23.6 pW/ √ Hz, a maximum optical responsivity of 1281 V/W (w/o Gain) and a minimum NEP of 15.3 pW/ √ Hz are achieved. Under a 4.3 THz pulsed radiation from quantum cascade laser (QCL), the module has a peak optical responsivity of 26 V/W (with Gain = 700) and a NEP of 567 nW/ √ Hz. The rise time of the output signal is 1.14 μs and the fall time is 0.78 μs when the module is operated at a maximum amplification gain of 700 and 6 kHz modulation frequency. To further enhance the sensitivity of the detection module, the design of the detector and the noise of the circuit need to be considered.\",\"PeriodicalId\":258680,\"journal\":{\"name\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"volume\":\"12505 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2664533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2664533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了适应可变太赫兹应用情况,设计并演示了一种紧凑,高灵敏度和室温太赫兹检测模块。该检测模块的体积小于350 cm3,集成了准光耦合太赫兹探测器、基于互补金属氧化物半导体(cmos)的电压放大电路和偏置电路。设计了一种天线耦合AlGaN/GaN高电子迁移率晶体管(HEMT),利用自混合机制探测太赫兹波。来自检测芯片的电信号被电压放大电路放大。放大电路的电压增益可从100到700调节,以适应不同的要求。偏置电路为探测器的栅极提供偏置电压。演示了该模块检测连续和脉冲太赫兹波的能力。在0.73 ~ 1.13 THz的相干连续太赫兹辐射下,平均噪声等效功率(NEP)为23.6 pW/√Hz,最大光响应率为1281 V/W (W/ o增益),最小NEP为15.3 pW/√Hz。在量子级联激光器(QCL)的4.3 THz脉冲辐射下,该模块的峰值光响应率为26 V/W(增益= 700),NEP为567 nW/√Hz。当模块工作在最大放大增益为700、调制频率为6 kHz时,输出信号的上升时间为1.14 μs,下降时间为0.78 μs。为了进一步提高检测模块的灵敏度,需要考虑检测器的设计和电路的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terahertz detection module based on antenna-coupled AlGaN/GaN HEMTs
To accommodate variable terahertz application situations, a compact, high-sensitivity and room-temperature terahertz detection module is designed and demonstrated. The detection module with a volume of less than 350 cm3 integrates a quasi-optically coupled terahertz detector, complementary-metal-oxide-semiconductor-based (CMOS-based) voltage amplifier circuit and bias circuit. An antenna-coupled AlGaN/GaN high-electron-mobility transistor (HEMT) are designed to detect terahertz waves by using self-mixing mechanism. The electrical signal from the detector chip is amplified by a voltage amplifier circuit. The amplifier circuit’s voltage gain can be adjusted from 100 to 700 to accommodate different requirements. The bias circuit provides bias voltage to the gate of the detector. Ability to detect both continuous and pulsed terahertz waves by the module is demonstrated. Under a coherent continuous terahertz irradiation from 0.73 to 1.13 THz, an average noise-equivalent power (NEP) of 23.6 pW/ √ Hz, a maximum optical responsivity of 1281 V/W (w/o Gain) and a minimum NEP of 15.3 pW/ √ Hz are achieved. Under a 4.3 THz pulsed radiation from quantum cascade laser (QCL), the module has a peak optical responsivity of 26 V/W (with Gain = 700) and a NEP of 567 nW/ √ Hz. The rise time of the output signal is 1.14 μs and the fall time is 0.78 μs when the module is operated at a maximum amplification gain of 700 and 6 kHz modulation frequency. To further enhance the sensitivity of the detection module, the design of the detector and the noise of the circuit need to be considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信