{"title":"李雅普诺夫-施密特分支方程的群对称性及分岔点问题的迭代方法","authors":"B. Loginov, N. Sidorov","doi":"10.1070/SM1992V073N01ABEH002535","DOIUrl":null,"url":null,"abstract":"Using group-theoretic methods (MR 80d: 58072, 83m: 58082), the authors construct the general form of the branching equation, symmetric with respect to fundamental representations of the rotation group, and on the basis of this form they propose an iterative method for calculating families of small branching solutions in a neighborhood of a bifurcation point, depending on free parameters.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"144 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"GROUP SYMMETRY OF THE LYAPUNOV-SCHMIDT BRANCHING EQUATION AND ITERATIVE METHODS IN THE PROBLEM OF A BIFURCATION POINT\",\"authors\":\"B. Loginov, N. Sidorov\",\"doi\":\"10.1070/SM1992V073N01ABEH002535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using group-theoretic methods (MR 80d: 58072, 83m: 58082), the authors construct the general form of the branching equation, symmetric with respect to fundamental representations of the rotation group, and on the basis of this form they propose an iterative method for calculating families of small branching solutions in a neighborhood of a bifurcation point, depending on free parameters.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"144 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V073N01ABEH002535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V073N01ABEH002535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GROUP SYMMETRY OF THE LYAPUNOV-SCHMIDT BRANCHING EQUATION AND ITERATIVE METHODS IN THE PROBLEM OF A BIFURCATION POINT
Using group-theoretic methods (MR 80d: 58072, 83m: 58082), the authors construct the general form of the branching equation, symmetric with respect to fundamental representations of the rotation group, and on the basis of this form they propose an iterative method for calculating families of small branching solutions in a neighborhood of a bifurcation point, depending on free parameters.