Calderón传递原理的推广及其在遍历极大函数中的应用

Sakin Demir
{"title":"Calderón传递原理的推广及其在遍历极大函数中的应用","authors":"Sakin Demir","doi":"10.22377/ajms.v4i2.272","DOIUrl":null,"url":null,"abstract":"We first prove that the well known transfer principle of A. P. Calderon can be extended to the vector-valued setting and then we apply this extension to vector-valued inequalities for the Hardy-Littlewood maximal function to prove the vector-valued strong type $L^p$ norm inequalities for $1<p<\\infty$ and the vector-valued weak type $(1,1)$ inequality for ergodic maximal function.","PeriodicalId":443021,"journal":{"name":"Engineering Educator: Courses","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension of Calderón Transfer Principle and its Application to Ergodic Maximal Function\",\"authors\":\"Sakin Demir\",\"doi\":\"10.22377/ajms.v4i2.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first prove that the well known transfer principle of A. P. Calderon can be extended to the vector-valued setting and then we apply this extension to vector-valued inequalities for the Hardy-Littlewood maximal function to prove the vector-valued strong type $L^p$ norm inequalities for $1<p<\\\\infty$ and the vector-valued weak type $(1,1)$ inequality for ergodic maximal function.\",\"PeriodicalId\":443021,\"journal\":{\"name\":\"Engineering Educator: Courses\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Educator: Courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22377/ajms.v4i2.272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Educator: Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22377/ajms.v4i2.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先证明了A. P. Calderon的传递原理可以推广到向量值集合,然后将这一推广应用到Hardy-Littlewood极大函数的向量值不等式上,证明了$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
An Extension of Calderón Transfer Principle and its Application to Ergodic Maximal Function
We first prove that the well known transfer principle of A. P. Calderon can be extended to the vector-valued setting and then we apply this extension to vector-valued inequalities for the Hardy-Littlewood maximal function to prove the vector-valued strong type $L^p$ norm inequalities for $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信