{"title":"Calderón传递原理的推广及其在遍历极大函数中的应用","authors":"Sakin Demir","doi":"10.22377/ajms.v4i2.272","DOIUrl":null,"url":null,"abstract":"We first prove that the well known transfer principle of A. P. Calderon can be extended to the vector-valued setting and then we apply this extension to vector-valued inequalities for the Hardy-Littlewood maximal function to prove the vector-valued strong type $L^p$ norm inequalities for $1<p<\\infty$ and the vector-valued weak type $(1,1)$ inequality for ergodic maximal function.","PeriodicalId":443021,"journal":{"name":"Engineering Educator: Courses","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension of Calderón Transfer Principle and its Application to Ergodic Maximal Function\",\"authors\":\"Sakin Demir\",\"doi\":\"10.22377/ajms.v4i2.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first prove that the well known transfer principle of A. P. Calderon can be extended to the vector-valued setting and then we apply this extension to vector-valued inequalities for the Hardy-Littlewood maximal function to prove the vector-valued strong type $L^p$ norm inequalities for $1<p<\\\\infty$ and the vector-valued weak type $(1,1)$ inequality for ergodic maximal function.\",\"PeriodicalId\":443021,\"journal\":{\"name\":\"Engineering Educator: Courses\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Educator: Courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22377/ajms.v4i2.272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Educator: Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22377/ajms.v4i2.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
首先证明了A. P. Calderon的传递原理可以推广到向量值集合,然后将这一推广应用到Hardy-Littlewood极大函数的向量值不等式上,证明了$1
An Extension of Calderón Transfer Principle and its Application to Ergodic Maximal Function
We first prove that the well known transfer principle of A. P. Calderon can be extended to the vector-valued setting and then we apply this extension to vector-valued inequalities for the Hardy-Littlewood maximal function to prove the vector-valued strong type $L^p$ norm inequalities for $1