动态场景中凸点运动的自适应方法

Min Liu, Weizhong Liu, Daoli Zhang, Zhuoming Feng
{"title":"动态场景中凸点运动的自适应方法","authors":"Min Liu, Weizhong Liu, Daoli Zhang, Zhuoming Feng","doi":"10.1109/MINES.2012.58","DOIUrl":null,"url":null,"abstract":"We propose an adaptive approach for salient motion in dynamic scenes, which models each video clip of τ frames with the dynamic texture(DT) model in a holistic manner. The order of the DT model is chosen adaptively by evaluating the increment of singular entropy. A simple and computationally efficient formula is proposed to measure observability. The formula is related to time-domain eigenvalues and eigenvectors, but the eigenvalue decomposition operation is not needed. The foreground-background segmentation can be obtained by thresholding the observability value of each pixel location. Our proposed method is tested on a various sequences set. Its computational efficiency outperforms the state-of-the-art methods and its equal error rate (EER) is lower than most current methods.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Approach for Salient Motion in Dynamic Scenes\",\"authors\":\"Min Liu, Weizhong Liu, Daoli Zhang, Zhuoming Feng\",\"doi\":\"10.1109/MINES.2012.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an adaptive approach for salient motion in dynamic scenes, which models each video clip of τ frames with the dynamic texture(DT) model in a holistic manner. The order of the DT model is chosen adaptively by evaluating the increment of singular entropy. A simple and computationally efficient formula is proposed to measure observability. The formula is related to time-domain eigenvalues and eigenvectors, but the eigenvalue decomposition operation is not needed. The foreground-background segmentation can be obtained by thresholding the observability value of each pixel location. Our proposed method is tested on a various sequences set. Its computational efficiency outperforms the state-of-the-art methods and its equal error rate (EER) is lower than most current methods.\",\"PeriodicalId\":208089,\"journal\":{\"name\":\"2012 Fourth International Conference on Multimedia Information Networking and Security\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Multimedia Information Networking and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MINES.2012.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种动态场景中突出运动的自适应方法,该方法使用动态纹理(DT)模型对τ帧的每个视频片段进行整体建模。通过计算奇异熵的增量,自适应地选择DT模型的阶数。提出了一个简单、计算效率高的可观测性测量公式。该公式涉及时域特征值和特征向量,但不需要进行特征值分解运算。通过对每个像素位置的可观测值进行阈值分割,实现前景背景分割。在不同的序列集上对该方法进行了测试。该方法的计算效率优于目前最先进的方法,其等效错误率(EER)低于大多数现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Approach for Salient Motion in Dynamic Scenes
We propose an adaptive approach for salient motion in dynamic scenes, which models each video clip of τ frames with the dynamic texture(DT) model in a holistic manner. The order of the DT model is chosen adaptively by evaluating the increment of singular entropy. A simple and computationally efficient formula is proposed to measure observability. The formula is related to time-domain eigenvalues and eigenvectors, but the eigenvalue decomposition operation is not needed. The foreground-background segmentation can be obtained by thresholding the observability value of each pixel location. Our proposed method is tested on a various sequences set. Its computational efficiency outperforms the state-of-the-art methods and its equal error rate (EER) is lower than most current methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信