地球化学和阴极发光性质作为不同成因背景下钾长石的鉴别指标

Shisheng Li, Lin Li, Sheng‐Rong Li, M. Santosh, Ying-xin Song
{"title":"地球化学和阴极发光性质作为不同成因背景下钾长石的鉴别指标","authors":"Shisheng Li, Lin Li, Sheng‐Rong Li, M. Santosh, Ying-xin Song","doi":"10.3749/canmin.2200004","DOIUrl":null,"url":null,"abstract":"\n Potassic alteration is a common feature in hydrothermal ore systems, and both its occurrence and degree can be important features applicable to ore deposit exploration. Here we report results from optical cathodoluminescence (CL) and chemical composition investigations on K-feldspar of different origins in and around the Early Cretaceous lode gold deposits in the Xiaoqinling area, located along the southern margin of the North China Craton.\n We focus on K-feldspars from an Early Cretaceous biotite monzogranite (G-Kfs), a Paleoproterozoic migmatite (M-Kfs), and a hydrothermal alteration zone of Early Cretaceous gold deposits (H-Kfs). The grain size of G-Kfs ranges from 1 to 4 mm, usually exhibits tartan twinning, and occasionally shows evidence of exsolution. Part of the M-Kfs exhibits tartan twinning, and the grain size shows wide variation (from tens of microns to several centimeters), while the H-Kfs shows no twinning, and the grain size is generally less than 0.5 mm.\n Optical CL analyses show that the G-Kfs exhibits two emission bands at around 466–472 and 708–713 nm which occur in multiple, alternating dark red and blue zones. The M-Kfs exhibits blue, red, and/or violet-red luminescence resulting from two emission bands at 446–465 and 694–701 nm. The H-Kfs displays a distinct greenish-yellow luminescence resulting from an emission band at 545–550 nm.\n Electron probe microanalyses show that among the three K-feldspar types, the G-Kfs contains higher Na2O (average: 0.71 wt.%) and Al2O3 (average: 18.79 wt.%) and lower K2O (average: 15.62 wt.%), whereas the H-Kfs shows higher K2O (average: 16.31 wt.%) and lower Na2O (average: 0.45 wt.%) and Al2O3 (average: 18.61 wt.%). The K2O, Na2O, and Al2O3 contents of the M-Kfs are intermediate between those of the G-Kfs and H-Kfs. In transitioning from the G-Kfs, M-Kfs, to H-Kfs, it is noted that the concentrations of Sr, Ba, and Pb decrease progressively, whereas W, V, Zn, Mn, Sc, Ge, and Ga gradually increase. Concentrations of La, Ce, and Eu in the H-Kfs are lower than in the G-Kfs and M-Kfs, and the Cr and Cu concentrations in the G-Kfs are the lowest. Scatter diagrams constructed with Sr, Ba, Pb, and Rb concentrations show that the three types of K-feldspars fall into different fields. These, as well as the CL and spectral properties of K-feldspar, can clearly distinguish the K-feldspars of magmatic, metamorphic, and hydrothermal origin in the study area.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochemical and Cathodoluminescence Properties as Discriminators to Characterize K-Feldspar in Different Genetic Settings\",\"authors\":\"Shisheng Li, Lin Li, Sheng‐Rong Li, M. Santosh, Ying-xin Song\",\"doi\":\"10.3749/canmin.2200004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Potassic alteration is a common feature in hydrothermal ore systems, and both its occurrence and degree can be important features applicable to ore deposit exploration. Here we report results from optical cathodoluminescence (CL) and chemical composition investigations on K-feldspar of different origins in and around the Early Cretaceous lode gold deposits in the Xiaoqinling area, located along the southern margin of the North China Craton.\\n We focus on K-feldspars from an Early Cretaceous biotite monzogranite (G-Kfs), a Paleoproterozoic migmatite (M-Kfs), and a hydrothermal alteration zone of Early Cretaceous gold deposits (H-Kfs). The grain size of G-Kfs ranges from 1 to 4 mm, usually exhibits tartan twinning, and occasionally shows evidence of exsolution. Part of the M-Kfs exhibits tartan twinning, and the grain size shows wide variation (from tens of microns to several centimeters), while the H-Kfs shows no twinning, and the grain size is generally less than 0.5 mm.\\n Optical CL analyses show that the G-Kfs exhibits two emission bands at around 466–472 and 708–713 nm which occur in multiple, alternating dark red and blue zones. The M-Kfs exhibits blue, red, and/or violet-red luminescence resulting from two emission bands at 446–465 and 694–701 nm. The H-Kfs displays a distinct greenish-yellow luminescence resulting from an emission band at 545–550 nm.\\n Electron probe microanalyses show that among the three K-feldspar types, the G-Kfs contains higher Na2O (average: 0.71 wt.%) and Al2O3 (average: 18.79 wt.%) and lower K2O (average: 15.62 wt.%), whereas the H-Kfs shows higher K2O (average: 16.31 wt.%) and lower Na2O (average: 0.45 wt.%) and Al2O3 (average: 18.61 wt.%). The K2O, Na2O, and Al2O3 contents of the M-Kfs are intermediate between those of the G-Kfs and H-Kfs. In transitioning from the G-Kfs, M-Kfs, to H-Kfs, it is noted that the concentrations of Sr, Ba, and Pb decrease progressively, whereas W, V, Zn, Mn, Sc, Ge, and Ga gradually increase. Concentrations of La, Ce, and Eu in the H-Kfs are lower than in the G-Kfs and M-Kfs, and the Cr and Cu concentrations in the G-Kfs are the lowest. Scatter diagrams constructed with Sr, Ba, Pb, and Rb concentrations show that the three types of K-feldspars fall into different fields. These, as well as the CL and spectral properties of K-feldspar, can clearly distinguish the K-feldspars of magmatic, metamorphic, and hydrothermal origin in the study area.\",\"PeriodicalId\":134244,\"journal\":{\"name\":\"The Canadian Mineralogist\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Mineralogist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.2200004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.2200004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钾蚀变是热液矿系的共同特征,其产状和程度都是矿床找矿的重要特征。本文报道了华北克拉通南缘小秦岭地区早白垩世矿脉金矿床及其周围不同来源钾长石的光学阴极发光(CL)和化学成分研究结果。重点研究了早白垩世黑云母二长花岗岩(G-Kfs)、古元古代混辉岩(M-Kfs)和早白垩世热液蚀变带金矿床(H-Kfs)中的钾长石。G-Kfs的晶粒尺寸在1 ~ 4mm之间,通常表现为格子孪晶,偶尔也有析出的迹象。部分M-Kfs表现为格子孪晶,晶粒尺寸变化较大(从几十微米到几厘米不等),而H-Kfs则没有孪晶,晶粒尺寸一般小于0.5 mm。光学CL分析表明,G-Kfs在466-472 nm和708-713 nm附近有两个发射带,出现在多个交替的暗红色和蓝色区域。M-Kfs在446-465 nm和694-701 nm的两个发射波段显示出蓝色、红色和/或紫红色的发光。H-Kfs在545 ~ 550nm波段有明显的黄绿色发光。电子探针显微分析表明,在3种钾长石类型中,G-Kfs具有较高的Na2O(平均0.71 wt.%)和Al2O3(平均18.79 wt.%),较低的K2O(平均15.62 wt.%),而H-Kfs具有较高的K2O(平均16.31 wt.%)和较低的Na2O(平均0.45 wt.%)和Al2O3(平均18.61 wt.%)。M-Kfs的K2O、Na2O和Al2O3含量介于G-Kfs和H-Kfs之间。在从G-Kfs、M-Kfs到H-Kfs的过渡过程中,Sr、Ba和Pb的浓度逐渐降低,而W、V、Zn、Mn、Sc、Ge和Ga的浓度逐渐增加。La、Ce和Eu在H-Kfs中的含量低于G-Kfs和M-Kfs, Cr和Cu在G-Kfs中的含量最低。用Sr、Ba、Pb和Rb浓度构建的散点图表明,三种类型的钾长石分布在不同的场域中。这些特征以及钾长石的CL和光谱特征可以清晰地区分研究区内钾长石的岩浆成因、变质成因和热液成因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geochemical and Cathodoluminescence Properties as Discriminators to Characterize K-Feldspar in Different Genetic Settings
Potassic alteration is a common feature in hydrothermal ore systems, and both its occurrence and degree can be important features applicable to ore deposit exploration. Here we report results from optical cathodoluminescence (CL) and chemical composition investigations on K-feldspar of different origins in and around the Early Cretaceous lode gold deposits in the Xiaoqinling area, located along the southern margin of the North China Craton. We focus on K-feldspars from an Early Cretaceous biotite monzogranite (G-Kfs), a Paleoproterozoic migmatite (M-Kfs), and a hydrothermal alteration zone of Early Cretaceous gold deposits (H-Kfs). The grain size of G-Kfs ranges from 1 to 4 mm, usually exhibits tartan twinning, and occasionally shows evidence of exsolution. Part of the M-Kfs exhibits tartan twinning, and the grain size shows wide variation (from tens of microns to several centimeters), while the H-Kfs shows no twinning, and the grain size is generally less than 0.5 mm. Optical CL analyses show that the G-Kfs exhibits two emission bands at around 466–472 and 708–713 nm which occur in multiple, alternating dark red and blue zones. The M-Kfs exhibits blue, red, and/or violet-red luminescence resulting from two emission bands at 446–465 and 694–701 nm. The H-Kfs displays a distinct greenish-yellow luminescence resulting from an emission band at 545–550 nm. Electron probe microanalyses show that among the three K-feldspar types, the G-Kfs contains higher Na2O (average: 0.71 wt.%) and Al2O3 (average: 18.79 wt.%) and lower K2O (average: 15.62 wt.%), whereas the H-Kfs shows higher K2O (average: 16.31 wt.%) and lower Na2O (average: 0.45 wt.%) and Al2O3 (average: 18.61 wt.%). The K2O, Na2O, and Al2O3 contents of the M-Kfs are intermediate between those of the G-Kfs and H-Kfs. In transitioning from the G-Kfs, M-Kfs, to H-Kfs, it is noted that the concentrations of Sr, Ba, and Pb decrease progressively, whereas W, V, Zn, Mn, Sc, Ge, and Ga gradually increase. Concentrations of La, Ce, and Eu in the H-Kfs are lower than in the G-Kfs and M-Kfs, and the Cr and Cu concentrations in the G-Kfs are the lowest. Scatter diagrams constructed with Sr, Ba, Pb, and Rb concentrations show that the three types of K-feldspars fall into different fields. These, as well as the CL and spectral properties of K-feldspar, can clearly distinguish the K-feldspars of magmatic, metamorphic, and hydrothermal origin in the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信