细胞网络中人类接触的时间模式分析与建模

Hayang Kim, H. Zang, Xiaoli Ma
{"title":"细胞网络中人类接触的时间模式分析与建模","authors":"Hayang Kim, H. Zang, Xiaoli Ma","doi":"10.1109/ICCCN.2013.6614108","DOIUrl":null,"url":null,"abstract":"As the usage of wireless devices rapidly increases, mobile phones have become an important aid for people to maintain social relationships. Analysis on cellular networks through mobile communication records, especially when such records contain temporal and spatial information, can potentially unveil fundamental laws that govern the dynamics of social networks. In this paper, we use call detail records (CDRs) collected from a nation-wide cellular network in North America for more than one month. We analyze contact patterns over one million pairs of people using real call data as looking into pairwise call records for each pair. First, we investigate the impacts of social relationships on contacts and discover that family members show different characteristics from non-family pairs in terms of contact regularity or duration. Next, we characterize inter-contact time and contact duration using finite mixture models of Gaussian, Lognormal, and Gamma distributions for each pair. Our mixture models for pairwise communication patterns of cellular users capture and demonstrate burstiness, periodicity, and inhomogeneity of human communication.","PeriodicalId":207337,"journal":{"name":"2013 22nd International Conference on Computer Communication and Networks (ICCCN)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analyzing and Modeling Temporal Patterns of Human Contacts in Cellular Networks\",\"authors\":\"Hayang Kim, H. Zang, Xiaoli Ma\",\"doi\":\"10.1109/ICCCN.2013.6614108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the usage of wireless devices rapidly increases, mobile phones have become an important aid for people to maintain social relationships. Analysis on cellular networks through mobile communication records, especially when such records contain temporal and spatial information, can potentially unveil fundamental laws that govern the dynamics of social networks. In this paper, we use call detail records (CDRs) collected from a nation-wide cellular network in North America for more than one month. We analyze contact patterns over one million pairs of people using real call data as looking into pairwise call records for each pair. First, we investigate the impacts of social relationships on contacts and discover that family members show different characteristics from non-family pairs in terms of contact regularity or duration. Next, we characterize inter-contact time and contact duration using finite mixture models of Gaussian, Lognormal, and Gamma distributions for each pair. Our mixture models for pairwise communication patterns of cellular users capture and demonstrate burstiness, periodicity, and inhomogeneity of human communication.\",\"PeriodicalId\":207337,\"journal\":{\"name\":\"2013 22nd International Conference on Computer Communication and Networks (ICCCN)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 22nd International Conference on Computer Communication and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN.2013.6614108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 22nd International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2013.6614108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着无线设备的使用迅速增加,手机已经成为人们维持社会关系的重要辅助工具。通过移动通信记录对蜂窝网络进行分析,特别是当这些记录包含时间和空间信息时,可以潜在地揭示支配社会网络动态的基本规律。在本文中,我们使用了从北美全国蜂窝网络收集的一个多月的通话详细记录(cdr)。我们分析了超过一百万对人的联系模式,使用真实的通话数据来查看每对人的成对通话记录。首先,我们研究了社会关系对接触的影响,发现家庭成员与非家庭成员在接触频率或持续时间方面表现出不同的特征。接下来,我们使用高斯、对数正态和伽玛分布的有限混合模型来描述每对的接触时间和接触持续时间。我们的蜂窝用户成对通信模式的混合模型捕捉并展示了人类通信的突发性、周期性和非同质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing and Modeling Temporal Patterns of Human Contacts in Cellular Networks
As the usage of wireless devices rapidly increases, mobile phones have become an important aid for people to maintain social relationships. Analysis on cellular networks through mobile communication records, especially when such records contain temporal and spatial information, can potentially unveil fundamental laws that govern the dynamics of social networks. In this paper, we use call detail records (CDRs) collected from a nation-wide cellular network in North America for more than one month. We analyze contact patterns over one million pairs of people using real call data as looking into pairwise call records for each pair. First, we investigate the impacts of social relationships on contacts and discover that family members show different characteristics from non-family pairs in terms of contact regularity or duration. Next, we characterize inter-contact time and contact duration using finite mixture models of Gaussian, Lognormal, and Gamma distributions for each pair. Our mixture models for pairwise communication patterns of cellular users capture and demonstrate burstiness, periodicity, and inhomogeneity of human communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信