前馈神经网络在软性传感器中的应用

D. Devogelaere, M. Rijckaert, Osvaldo Goza Leon, G. Lemus
{"title":"前馈神经网络在软性传感器中的应用","authors":"D. Devogelaere, M. Rijckaert, Osvaldo Goza Leon, G. Lemus","doi":"10.1109/SBRN.2002.1181426","DOIUrl":null,"url":null,"abstract":"Neural networks have been successfully applied as intelligent sensors for process modeling and control. In this paper, the application of soft sensors in the cane sugar industry is discussed. A neural network is trained on historical data to predict process quality variables so that it can replace the lab-test procedure. An immediate benefit of building intelligent sensors is that the neural network can predict product quality in a timely manner.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Application of feedforward neural networks for soft sensors in the sugar industry\",\"authors\":\"D. Devogelaere, M. Rijckaert, Osvaldo Goza Leon, G. Lemus\",\"doi\":\"10.1109/SBRN.2002.1181426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have been successfully applied as intelligent sensors for process modeling and control. In this paper, the application of soft sensors in the cane sugar industry is discussed. A neural network is trained on historical data to predict process quality variables so that it can replace the lab-test procedure. An immediate benefit of building intelligent sensors is that the neural network can predict product quality in a timely manner.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

神经网络已成功地应用于过程建模和控制的智能传感器。本文讨论了软传感器在蔗糖工业中的应用。利用历史数据训练神经网络来预测过程质量变量,从而取代实验室测试过程。构建智能传感器的一个直接好处是,神经网络可以及时预测产品质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of feedforward neural networks for soft sensors in the sugar industry
Neural networks have been successfully applied as intelligent sensors for process modeling and control. In this paper, the application of soft sensors in the cane sugar industry is discussed. A neural network is trained on historical data to predict process quality variables so that it can replace the lab-test procedure. An immediate benefit of building intelligent sensors is that the neural network can predict product quality in a timely manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信