一种基于ICA模型阶数估计的改进单试验脑磁图噪声识别与去除的自适应系统

Carl Leichter
{"title":"一种基于ICA模型阶数估计的改进单试验脑磁图噪声识别与去除的自适应系统","authors":"Carl Leichter","doi":"10.1109/HIS.2006.11","DOIUrl":null,"url":null,"abstract":"An adaptive model order estimation method for Independent Component Analysis (ICA) in EEG/MEG data is presented. This technique seeks to extract the minimum number of components necessary for effective Blind Source Separation (BSS). Experimental results using synthesized noisy MEG data demonstrate the utility of this technique. Model order estimation is used in the extraction of baseline noise components which will serve as templates for subsequent identification and removal of noise. These templates are used to remove noise from a data set containing a somatosensory evoked response (SSR) potential; model order estimation was also used to decompose the SSR data set.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive System for Improved Identification and Removal of Noise from Single Trial EEG/MEG via Model Order Estimation in ICA\",\"authors\":\"Carl Leichter\",\"doi\":\"10.1109/HIS.2006.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive model order estimation method for Independent Component Analysis (ICA) in EEG/MEG data is presented. This technique seeks to extract the minimum number of components necessary for effective Blind Source Separation (BSS). Experimental results using synthesized noisy MEG data demonstrate the utility of this technique. Model order estimation is used in the extraction of baseline noise components which will serve as templates for subsequent identification and removal of noise. These templates are used to remove noise from a data set containing a somatosensory evoked response (SSR) potential; model order estimation was also used to decompose the SSR data set.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于脑磁图独立分量分析的自适应模型阶数估计方法。该技术旨在提取有效盲源分离(BSS)所需的最小分量。实验结果证明了该方法的有效性。模型阶数估计用于提取基线噪声分量,这些噪声分量将作为后续识别和去除噪声的模板。这些模板用于从包含体感诱发反应(SSR)电位的数据集中去除噪声;利用模型阶数估计对SSR数据集进行分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive System for Improved Identification and Removal of Noise from Single Trial EEG/MEG via Model Order Estimation in ICA
An adaptive model order estimation method for Independent Component Analysis (ICA) in EEG/MEG data is presented. This technique seeks to extract the minimum number of components necessary for effective Blind Source Separation (BSS). Experimental results using synthesized noisy MEG data demonstrate the utility of this technique. Model order estimation is used in the extraction of baseline noise components which will serve as templates for subsequent identification and removal of noise. These templates are used to remove noise from a data set containing a somatosensory evoked response (SSR) potential; model order estimation was also used to decompose the SSR data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信