{"title":"基于任务结构和过程时序仿真的时序驱动软硬件协同设计","authors":"Dinesh Ramanathan, Ali Dasdan, Rajesh K. Gupta","doi":"10.1145/301177.301532","DOIUrl":null,"url":null,"abstract":"Task structuring is the process of determining the individual tasks of a system, leading to the system's description as a task graph. This paper shows that RADHA-RATAN, our rate derivation algorithms, can be used to validate various tradeoffs made during task structuring, making this step timing aware. We show how RADHA-RATAN enables construction of a high-level timing model of the system leading to a process timing simulation of the entire system. An interesting aspect of process timing simulation is that it provides the ability to observe system level timing behavior based on timing requirements and analysis before an implementation of the tasks has been carried out. Based on task structuring and process timing simulation we propose a codesign methodology by which a system designer can gain insight into the system's timing performance. This approach enables the designer to reduce expensive timing driven design iterations. We have implemented this methodology in the RADHA-RATAN framework. We illustrate its application by an example.","PeriodicalId":344739,"journal":{"name":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Timing-driven HW/SW codesign based on task structuring and process timing simulation\",\"authors\":\"Dinesh Ramanathan, Ali Dasdan, Rajesh K. Gupta\",\"doi\":\"10.1145/301177.301532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task structuring is the process of determining the individual tasks of a system, leading to the system's description as a task graph. This paper shows that RADHA-RATAN, our rate derivation algorithms, can be used to validate various tradeoffs made during task structuring, making this step timing aware. We show how RADHA-RATAN enables construction of a high-level timing model of the system leading to a process timing simulation of the entire system. An interesting aspect of process timing simulation is that it provides the ability to observe system level timing behavior based on timing requirements and analysis before an implementation of the tasks has been carried out. Based on task structuring and process timing simulation we propose a codesign methodology by which a system designer can gain insight into the system's timing performance. This approach enables the designer to reduce expensive timing driven design iterations. We have implemented this methodology in the RADHA-RATAN framework. We illustrate its application by an example.\",\"PeriodicalId\":344739,\"journal\":{\"name\":\"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/301177.301532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301177.301532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Timing-driven HW/SW codesign based on task structuring and process timing simulation
Task structuring is the process of determining the individual tasks of a system, leading to the system's description as a task graph. This paper shows that RADHA-RATAN, our rate derivation algorithms, can be used to validate various tradeoffs made during task structuring, making this step timing aware. We show how RADHA-RATAN enables construction of a high-level timing model of the system leading to a process timing simulation of the entire system. An interesting aspect of process timing simulation is that it provides the ability to observe system level timing behavior based on timing requirements and analysis before an implementation of the tasks has been carried out. Based on task structuring and process timing simulation we propose a codesign methodology by which a system designer can gain insight into the system's timing performance. This approach enables the designer to reduce expensive timing driven design iterations. We have implemented this methodology in the RADHA-RATAN framework. We illustrate its application by an example.