论水库计算在人口预测中的应用

Tingyao Wu, M. Timmers, D. D. Vleeschauwer, W. V. Leekwijck
{"title":"论水库计算在人口预测中的应用","authors":"Tingyao Wu, M. Timmers, D. D. Vleeschauwer, W. V. Leekwijck","doi":"10.1109/INTERNET.2010.13","DOIUrl":null,"url":null,"abstract":"Predicting the life cycle and the short-term popularity of a Web object is important for network architecture optimization. In this paper, we attempt to predict the popularity of a Web object given its historical access records using a novel neural network technique, reservoir computing (RC). The traces of popular videos at YouTube for five continuous months are taken as a case study. We compare RC with existing analytical models. Experimental results show that RC, given a 10-day trace composed of daily cumulative views for a video, is able to predict the next-day’s popularity with less than 5% relative square errors (RSEs). It is also demonstrated that RC achieves the best prediction performance among all compared models in longer-term prediction. The advantages and limitations of using RC in popularity prediction are discussed.","PeriodicalId":155572,"journal":{"name":"2010 2nd International Conference on Evolving Internet","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"On the Use of Reservoir Computing in Popularity Prediction\",\"authors\":\"Tingyao Wu, M. Timmers, D. D. Vleeschauwer, W. V. Leekwijck\",\"doi\":\"10.1109/INTERNET.2010.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the life cycle and the short-term popularity of a Web object is important for network architecture optimization. In this paper, we attempt to predict the popularity of a Web object given its historical access records using a novel neural network technique, reservoir computing (RC). The traces of popular videos at YouTube for five continuous months are taken as a case study. We compare RC with existing analytical models. Experimental results show that RC, given a 10-day trace composed of daily cumulative views for a video, is able to predict the next-day’s popularity with less than 5% relative square errors (RSEs). It is also demonstrated that RC achieves the best prediction performance among all compared models in longer-term prediction. The advantages and limitations of using RC in popularity prediction are discussed.\",\"PeriodicalId\":155572,\"journal\":{\"name\":\"2010 2nd International Conference on Evolving Internet\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Evolving Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERNET.2010.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Evolving Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERNET.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

预测Web对象的生命周期和短期流行度对于网络体系结构优化非常重要。在本文中,我们尝试使用一种新的神经网络技术,水库计算(RC)来预测Web对象的历史访问记录的受欢迎程度。以连续5个月在YouTube上流行视频的轨迹为例进行了研究。我们将RC与现有的分析模型进行比较。实验结果表明,给定由每日累计观看视频组成的10天跟踪,RC能够以小于5%的相对平方误差(RSEs)预测第二天的受欢迎程度。在较长期的预测中,RC模型的预测效果最好。讨论了在流行预测中使用RC的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of Reservoir Computing in Popularity Prediction
Predicting the life cycle and the short-term popularity of a Web object is important for network architecture optimization. In this paper, we attempt to predict the popularity of a Web object given its historical access records using a novel neural network technique, reservoir computing (RC). The traces of popular videos at YouTube for five continuous months are taken as a case study. We compare RC with existing analytical models. Experimental results show that RC, given a 10-day trace composed of daily cumulative views for a video, is able to predict the next-day’s popularity with less than 5% relative square errors (RSEs). It is also demonstrated that RC achieves the best prediction performance among all compared models in longer-term prediction. The advantages and limitations of using RC in popularity prediction are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信