S. Kanagaraj, A. Shahina, M. Devosh, N. Kamalakannan
{"title":"情绪测量:使用加权组合模型测量混合情绪","authors":"S. Kanagaraj, A. Shahina, M. Devosh, N. Kamalakannan","doi":"10.1109/ICRTIT.2014.6996192","DOIUrl":null,"url":null,"abstract":"Emotion Recognition is an important area of affective computing and has potential applications. This paper proposes a combinational model to compute the percentage of different emotions jointly present in a given speech input. This model is a weighted combination of the classifier models like Neural Network, k-Nearest Neighbors, Gaussian Mixture Model, Naïve Bayesian Classifier and Support Vector Machines is proposed. The results of classification from the individual models are reported and compared with the proposed combinational model. It shows that the best performance is achieved using the proposed combination than the individual models.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"EmoMeter: Measuring mixed emotions using weighted combinational model\",\"authors\":\"S. Kanagaraj, A. Shahina, M. Devosh, N. Kamalakannan\",\"doi\":\"10.1109/ICRTIT.2014.6996192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion Recognition is an important area of affective computing and has potential applications. This paper proposes a combinational model to compute the percentage of different emotions jointly present in a given speech input. This model is a weighted combination of the classifier models like Neural Network, k-Nearest Neighbors, Gaussian Mixture Model, Naïve Bayesian Classifier and Support Vector Machines is proposed. The results of classification from the individual models are reported and compared with the proposed combinational model. It shows that the best performance is achieved using the proposed combination than the individual models.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EmoMeter: Measuring mixed emotions using weighted combinational model
Emotion Recognition is an important area of affective computing and has potential applications. This paper proposes a combinational model to compute the percentage of different emotions jointly present in a given speech input. This model is a weighted combination of the classifier models like Neural Network, k-Nearest Neighbors, Gaussian Mixture Model, Naïve Bayesian Classifier and Support Vector Machines is proposed. The results of classification from the individual models are reported and compared with the proposed combinational model. It shows that the best performance is achieved using the proposed combination than the individual models.