情绪测量:使用加权组合模型测量混合情绪

S. Kanagaraj, A. Shahina, M. Devosh, N. Kamalakannan
{"title":"情绪测量:使用加权组合模型测量混合情绪","authors":"S. Kanagaraj, A. Shahina, M. Devosh, N. Kamalakannan","doi":"10.1109/ICRTIT.2014.6996192","DOIUrl":null,"url":null,"abstract":"Emotion Recognition is an important area of affective computing and has potential applications. This paper proposes a combinational model to compute the percentage of different emotions jointly present in a given speech input. This model is a weighted combination of the classifier models like Neural Network, k-Nearest Neighbors, Gaussian Mixture Model, Naïve Bayesian Classifier and Support Vector Machines is proposed. The results of classification from the individual models are reported and compared with the proposed combinational model. It shows that the best performance is achieved using the proposed combination than the individual models.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"EmoMeter: Measuring mixed emotions using weighted combinational model\",\"authors\":\"S. Kanagaraj, A. Shahina, M. Devosh, N. Kamalakannan\",\"doi\":\"10.1109/ICRTIT.2014.6996192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion Recognition is an important area of affective computing and has potential applications. This paper proposes a combinational model to compute the percentage of different emotions jointly present in a given speech input. This model is a weighted combination of the classifier models like Neural Network, k-Nearest Neighbors, Gaussian Mixture Model, Naïve Bayesian Classifier and Support Vector Machines is proposed. The results of classification from the individual models are reported and compared with the proposed combinational model. It shows that the best performance is achieved using the proposed combination than the individual models.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

情感识别是情感计算的一个重要领域,具有潜在的应用前景。本文提出了一种组合模型来计算不同情绪在给定语音输入中共同出现的百分比。该模型是神经网络、k近邻、高斯混合模型、Naïve贝叶斯分类器和支持向量机等分类器模型的加权组合。报告了单个模型的分类结果,并与所提出的组合模型进行了比较。结果表明,与单个模型相比,使用所提出的组合模型可以获得最佳的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EmoMeter: Measuring mixed emotions using weighted combinational model
Emotion Recognition is an important area of affective computing and has potential applications. This paper proposes a combinational model to compute the percentage of different emotions jointly present in a given speech input. This model is a weighted combination of the classifier models like Neural Network, k-Nearest Neighbors, Gaussian Mixture Model, Naïve Bayesian Classifier and Support Vector Machines is proposed. The results of classification from the individual models are reported and compared with the proposed combinational model. It shows that the best performance is achieved using the proposed combination than the individual models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信