{"title":"结合显式实体图和隐式文本信息的新闻推荐","authors":"Xuanyu Zhang, Qing Yang, Dongliang Xu","doi":"10.1145/3442442.3452329","DOIUrl":null,"url":null,"abstract":"News recommendation is very crucial for online news services to improve user experience and alleviate information overload. Precisely learning representations of news and users is the core problem in news recommendation. Existing models usually focus on implicit text information to learn corresponding representations, which may be insufficient for modeling user interests. Even if entity information is considered from external knowledge, it may still not be used explicitly and effectively for user modeling. In this paper, we propose a novel news recommendation approach, which combine explicit entity graph with implicit text information. The entity graph consists of two types of nodes and three kinds of edges, which represent chronological order, related and affiliation relationship. Then graph neural network is utilized for reasoning on these nodes. Extensive experiments on a real-world dataset, Microsoft News Dataset (MIND), validate the effectiveness of our proposed approach.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Combining Explicit Entity Graph with Implicit Text Information for News Recommendation\",\"authors\":\"Xuanyu Zhang, Qing Yang, Dongliang Xu\",\"doi\":\"10.1145/3442442.3452329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News recommendation is very crucial for online news services to improve user experience and alleviate information overload. Precisely learning representations of news and users is the core problem in news recommendation. Existing models usually focus on implicit text information to learn corresponding representations, which may be insufficient for modeling user interests. Even if entity information is considered from external knowledge, it may still not be used explicitly and effectively for user modeling. In this paper, we propose a novel news recommendation approach, which combine explicit entity graph with implicit text information. The entity graph consists of two types of nodes and three kinds of edges, which represent chronological order, related and affiliation relationship. Then graph neural network is utilized for reasoning on these nodes. Extensive experiments on a real-world dataset, Microsoft News Dataset (MIND), validate the effectiveness of our proposed approach.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3452329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Explicit Entity Graph with Implicit Text Information for News Recommendation
News recommendation is very crucial for online news services to improve user experience and alleviate information overload. Precisely learning representations of news and users is the core problem in news recommendation. Existing models usually focus on implicit text information to learn corresponding representations, which may be insufficient for modeling user interests. Even if entity information is considered from external knowledge, it may still not be used explicitly and effectively for user modeling. In this paper, we propose a novel news recommendation approach, which combine explicit entity graph with implicit text information. The entity graph consists of two types of nodes and three kinds of edges, which represent chronological order, related and affiliation relationship. Then graph neural network is utilized for reasoning on these nodes. Extensive experiments on a real-world dataset, Microsoft News Dataset (MIND), validate the effectiveness of our proposed approach.