从高光谱图像中提取GIS层

Torsten E. Howard, M. Mendenhall, Gilbert L. Peterson
{"title":"从高光谱图像中提取GIS层","authors":"Torsten E. Howard, M. Mendenhall, Gilbert L. Peterson","doi":"10.1109/WHISPERS.2009.5289023","DOIUrl":null,"url":null,"abstract":"The spectral-spatial relationship of materials in a hyperspectral image cube is exploited to partially automate the creation of Geographic Information System (GIS) layers. The topological neighborhood preservation property of the Self Organizing Map (SOM) is clustered into six (partially overlapping) neighborhoods that are mapped into the image domain to locate in-scene structures of similar material type. GIS layers are abstracted through spatial logical and morphological operations on the six image domain material maps and a novel road finding algorithm connects road segments under significant tree-occlusion resulting in a contiguous road network. It is assumed that specific knowledge of the scene (e.g. endmember spectra) is not available. The results are eight separate high-quality GIS layers (Vegetation, Trees, Fields, Buildings, Major Buildings, Roadways, and Parking Areas) that follow the scene features of the hyperspectral image and are separately and automatically labeled. The material maps resulting from clustering the SOMhave an 84.3% average accuracy, which increases to 93.9% after spatial processing into GIS layers.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Abstracting GIS layers from hyperspectral imagery\",\"authors\":\"Torsten E. Howard, M. Mendenhall, Gilbert L. Peterson\",\"doi\":\"10.1109/WHISPERS.2009.5289023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral-spatial relationship of materials in a hyperspectral image cube is exploited to partially automate the creation of Geographic Information System (GIS) layers. The topological neighborhood preservation property of the Self Organizing Map (SOM) is clustered into six (partially overlapping) neighborhoods that are mapped into the image domain to locate in-scene structures of similar material type. GIS layers are abstracted through spatial logical and morphological operations on the six image domain material maps and a novel road finding algorithm connects road segments under significant tree-occlusion resulting in a contiguous road network. It is assumed that specific knowledge of the scene (e.g. endmember spectra) is not available. The results are eight separate high-quality GIS layers (Vegetation, Trees, Fields, Buildings, Major Buildings, Roadways, and Parking Areas) that follow the scene features of the hyperspectral image and are separately and automatically labeled. The material maps resulting from clustering the SOMhave an 84.3% average accuracy, which increases to 93.9% after spatial processing into GIS layers.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用高光谱图像立方体中材料的光谱-空间关系来部分自动化创建地理信息系统(GIS)层。自组织映射(SOM)的拓扑邻域保存特性被聚类成六个(部分重叠)邻域,这些邻域被映射到图像域中,以定位相似材料类型的场景中结构。通过对六个图像域材料图进行空间逻辑和形态运算,提取GIS层,并采用一种新的寻路算法将严重遮挡的道路段连接起来,形成连续的道路网络。假设对场景的具体知识(例如端元光谱)是不可用的。结果是8个独立的高质量GIS层(植被、树木、田野、建筑物、主要建筑物、道路和停车场),它们遵循高光谱图像的场景特征,并被单独自动标记。聚类得到的材料图平均精度为84.3%,经过GIS层空间处理后提高到93.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstracting GIS layers from hyperspectral imagery
The spectral-spatial relationship of materials in a hyperspectral image cube is exploited to partially automate the creation of Geographic Information System (GIS) layers. The topological neighborhood preservation property of the Self Organizing Map (SOM) is clustered into six (partially overlapping) neighborhoods that are mapped into the image domain to locate in-scene structures of similar material type. GIS layers are abstracted through spatial logical and morphological operations on the six image domain material maps and a novel road finding algorithm connects road segments under significant tree-occlusion resulting in a contiguous road network. It is assumed that specific knowledge of the scene (e.g. endmember spectra) is not available. The results are eight separate high-quality GIS layers (Vegetation, Trees, Fields, Buildings, Major Buildings, Roadways, and Parking Areas) that follow the scene features of the hyperspectral image and are separately and automatically labeled. The material maps resulting from clustering the SOMhave an 84.3% average accuracy, which increases to 93.9% after spatial processing into GIS layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信