网络化工业系统中的信息处理与数据可视化

Pavol Mulinka, Charalampos Kalalas, Merim Dzaferagic, I. Macaluso, Daniel Gutierrez-Rojas, P. Nardelli, N. Marchetti
{"title":"网络化工业系统中的信息处理与数据可视化","authors":"Pavol Mulinka, Charalampos Kalalas, Merim Dzaferagic, I. Macaluso, Daniel Gutierrez-Rojas, P. Nardelli, N. Marchetti","doi":"10.1109/PIMRC50174.2021.9569603","DOIUrl":null,"url":null,"abstract":"Networked industrial systems capitalize on recent advancements in sensing, communications, computing and storage to improve productivity, operational and cost efficiency. The proliferation of effective techniques for knowledge extraction drive a paradigm shift in industrial environments and provide a fertile ground for enhanced process monitoring and control capabilities. In an effort to shed light on industrial data management operations, this paper presents two different approaches for dealing with information processing tasks of aggregated sensor measurements. Such tasks constitute part of an end-to-end process monitoring solution which is implemented in an open-source platform following a modular, scalable and interpretable procedure. A mapping of the industrial data processing components to the operational principles and architecture of a cyber-physical system reveals useful insights for an automated supervision of critical processes and workflows.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information Processing and Data Visualization in Networked Industrial Systems\",\"authors\":\"Pavol Mulinka, Charalampos Kalalas, Merim Dzaferagic, I. Macaluso, Daniel Gutierrez-Rojas, P. Nardelli, N. Marchetti\",\"doi\":\"10.1109/PIMRC50174.2021.9569603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networked industrial systems capitalize on recent advancements in sensing, communications, computing and storage to improve productivity, operational and cost efficiency. The proliferation of effective techniques for knowledge extraction drive a paradigm shift in industrial environments and provide a fertile ground for enhanced process monitoring and control capabilities. In an effort to shed light on industrial data management operations, this paper presents two different approaches for dealing with information processing tasks of aggregated sensor measurements. Such tasks constitute part of an end-to-end process monitoring solution which is implemented in an open-source platform following a modular, scalable and interpretable procedure. A mapping of the industrial data processing components to the operational principles and architecture of a cyber-physical system reveals useful insights for an automated supervision of critical processes and workflows.\",\"PeriodicalId\":283606,\"journal\":{\"name\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC50174.2021.9569603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络化工业系统利用传感、通信、计算和存储方面的最新进展来提高生产率、运营效率和成本效率。有效的知识提取技术的扩散推动了工业环境中的范式转变,并为增强过程监视和控制能力提供了肥沃的土壤。为了阐明工业数据管理操作,本文提出了两种不同的方法来处理聚合传感器测量的信息处理任务。这些任务构成端到端过程监控解决方案的一部分,该解决方案按照模块化、可扩展和可解释的过程在开源平台中实现。将工业数据处理组件映射到网络物理系统的操作原则和体系结构,揭示了对关键过程和工作流程的自动化监督的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Processing and Data Visualization in Networked Industrial Systems
Networked industrial systems capitalize on recent advancements in sensing, communications, computing and storage to improve productivity, operational and cost efficiency. The proliferation of effective techniques for knowledge extraction drive a paradigm shift in industrial environments and provide a fertile ground for enhanced process monitoring and control capabilities. In an effort to shed light on industrial data management operations, this paper presents two different approaches for dealing with information processing tasks of aggregated sensor measurements. Such tasks constitute part of an end-to-end process monitoring solution which is implemented in an open-source platform following a modular, scalable and interpretable procedure. A mapping of the industrial data processing components to the operational principles and architecture of a cyber-physical system reveals useful insights for an automated supervision of critical processes and workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信