非线性Volterra-Fredholm积分方程的Haar小波配点法数值解

S. Shiralashetti, R. Mundewadi
{"title":"非线性Volterra-Fredholm积分方程的Haar小波配点法数值解","authors":"S. Shiralashetti, R. Mundewadi","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.18.50","DOIUrl":null,"url":null,"abstract":"In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method\",\"authors\":\"S. Shiralashetti, R. Mundewadi\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.18.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.18.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.18.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文用Haar小波配点法给出了非线性Volterra-Fredholm积分方程的数值解。利用Haar小波及其运算矩阵的性质,将积分方程转化为代数方程组,利用MATLAB求解这些方程组,计算Haar系数。通过误差分析,将数值计算结果与精确方法和现有方法进行了比较,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method
In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信