碳纳米管毛细管冷凝电容式湿度传感

J. Yeow, J. She
{"title":"碳纳米管毛细管冷凝电容式湿度传感","authors":"J. Yeow, J. She","doi":"10.1109/ICSENS.2007.355500","DOIUrl":null,"url":null,"abstract":"This electronic document is a \"live\" A capacitive humidity sensor, fabricated by depositing multi-wall carbon nanotubes (MWCNTs) on one of the stainless steel substrates, is presented for moisture detection at room temperature. When compared to a sensor without CNTs, CNT-enhanced sensor has a capacitance response of 60-200% more when the humidity is under 70% relative humidity (RH), and 300%-3000% more if RH level goes over 70%. The detection and recovery response times are on the order of seconds. The performance is comparable to a commercial sensor from Honeywell that is used as a benchmark throughout the experiments. Our results demonstrate that nano-materials like MWCNTs, can naturally form porous nano-structures, which can potentially realize a miniature capacitive humidity sensor with a higher sensing resolution. The gain in performance is attributed to capillary condensation effect. The capillary condensation effect, that is facilitated by the porous nanostructures of random aligned MWCNTs, is discussed in this paper template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document.","PeriodicalId":233838,"journal":{"name":"2006 5th IEEE Conference on Sensors","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Capacitive Humidity Sensing using Carbon Nanotube Enabled Capillary Condensation\",\"authors\":\"J. Yeow, J. She\",\"doi\":\"10.1109/ICSENS.2007.355500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This electronic document is a \\\"live\\\" A capacitive humidity sensor, fabricated by depositing multi-wall carbon nanotubes (MWCNTs) on one of the stainless steel substrates, is presented for moisture detection at room temperature. When compared to a sensor without CNTs, CNT-enhanced sensor has a capacitance response of 60-200% more when the humidity is under 70% relative humidity (RH), and 300%-3000% more if RH level goes over 70%. The detection and recovery response times are on the order of seconds. The performance is comparable to a commercial sensor from Honeywell that is used as a benchmark throughout the experiments. Our results demonstrate that nano-materials like MWCNTs, can naturally form porous nano-structures, which can potentially realize a miniature capacitive humidity sensor with a higher sensing resolution. The gain in performance is attributed to capillary condensation effect. The capillary condensation effect, that is facilitated by the porous nanostructures of random aligned MWCNTs, is discussed in this paper template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document.\",\"PeriodicalId\":233838,\"journal\":{\"name\":\"2006 5th IEEE Conference on Sensors\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th IEEE Conference on Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2007.355500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th IEEE Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2007.355500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本电子文档是一个“活的”电容式湿度传感器,通过在不锈钢衬底上沉积多壁碳纳米管(MWCNTs)制成,用于室温下的湿度检测。与无CNTs的传感器相比,当相对湿度低于70%时,CNTs增强传感器的电容响应增加60-200%,当相对湿度超过70%时,电容响应增加300%-3000%。检测和恢复响应时间以秒为数量级。其性能可与霍尼韦尔(Honeywell)的商用传感器相媲美,该传感器在整个实验中被用作基准。我们的研究结果表明,纳米材料如MWCNTs可以自然形成多孔纳米结构,这有可能实现具有更高传感分辨率的微型电容式湿度传感器。性能的提高是由于毛细凝结效应。本文讨论了随机排列的MWCNTs的多孔纳米结构所促进的毛细凝结效应。论文的各个组成部分[标题,正文,标题等]已经在样式表中定义,如本文档中给出的部分所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacitive Humidity Sensing using Carbon Nanotube Enabled Capillary Condensation
This electronic document is a "live" A capacitive humidity sensor, fabricated by depositing multi-wall carbon nanotubes (MWCNTs) on one of the stainless steel substrates, is presented for moisture detection at room temperature. When compared to a sensor without CNTs, CNT-enhanced sensor has a capacitance response of 60-200% more when the humidity is under 70% relative humidity (RH), and 300%-3000% more if RH level goes over 70%. The detection and recovery response times are on the order of seconds. The performance is comparable to a commercial sensor from Honeywell that is used as a benchmark throughout the experiments. Our results demonstrate that nano-materials like MWCNTs, can naturally form porous nano-structures, which can potentially realize a miniature capacitive humidity sensor with a higher sensing resolution. The gain in performance is attributed to capillary condensation effect. The capillary condensation effect, that is facilitated by the porous nanostructures of random aligned MWCNTs, is discussed in this paper template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信