使用子空间算法识别线性重复过程

A. Janczak, D. Kujawa
{"title":"使用子空间算法识别线性重复过程","authors":"A. Janczak, D. Kujawa","doi":"10.1109/MMAR.2010.5587206","DOIUrl":null,"url":null,"abstract":"A new approach to the identification of linear repetitive processes based on subspace algorithms is presented. The order of a linear repetitive process, the unknown process matrices, and the noise covariance matrices are determined based on sequences of the actual pass input and the previous pass output, and the actual pass output. The identification procedure can be restarted consecutively starting from the first pass data and boundary conditions. Therefore, the proposed approach can be very useful not only for time invariant linear repetitive processes but also for processes with dynamics that changes rapidly from pass to pass. Simulation example is provided to demonstrate the asymptotic convergence of parameter estimates and the effectiveness of the proposed approach.","PeriodicalId":336219,"journal":{"name":"2010 15th International Conference on Methods and Models in Automation and Robotics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of linear repetitive processes using subspace algorithms\",\"authors\":\"A. Janczak, D. Kujawa\",\"doi\":\"10.1109/MMAR.2010.5587206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to the identification of linear repetitive processes based on subspace algorithms is presented. The order of a linear repetitive process, the unknown process matrices, and the noise covariance matrices are determined based on sequences of the actual pass input and the previous pass output, and the actual pass output. The identification procedure can be restarted consecutively starting from the first pass data and boundary conditions. Therefore, the proposed approach can be very useful not only for time invariant linear repetitive processes but also for processes with dynamics that changes rapidly from pass to pass. Simulation example is provided to demonstrate the asymptotic convergence of parameter estimates and the effectiveness of the proposed approach.\",\"PeriodicalId\":336219,\"journal\":{\"name\":\"2010 15th International Conference on Methods and Models in Automation and Robotics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th International Conference on Methods and Models in Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2010.5587206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th International Conference on Methods and Models in Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2010.5587206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于子空间算法的线性重复过程辨识新方法。线性重复过程的顺序、未知过程矩阵和噪声协方差矩阵是根据实际通过输入和前一次通过输出以及实际通过输出的序列来确定的。识别过程可以从第一次通过的数据和边界条件开始连续重新开始。因此,所提出的方法不仅对时不变线性重复过程非常有用,而且对具有动态变化的过程也非常有用。仿真实例证明了该方法的渐近收敛性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of linear repetitive processes using subspace algorithms
A new approach to the identification of linear repetitive processes based on subspace algorithms is presented. The order of a linear repetitive process, the unknown process matrices, and the noise covariance matrices are determined based on sequences of the actual pass input and the previous pass output, and the actual pass output. The identification procedure can be restarted consecutively starting from the first pass data and boundary conditions. Therefore, the proposed approach can be very useful not only for time invariant linear repetitive processes but also for processes with dynamics that changes rapidly from pass to pass. Simulation example is provided to demonstrate the asymptotic convergence of parameter estimates and the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信