{"title":"Realm:用于分布式内存体系结构的基于事件的低级运行时","authors":"Sean Treichler, Michael A. Bauer, A. Aiken","doi":"10.1145/2628071.2628084","DOIUrl":null,"url":null,"abstract":"We present Realm, an event-based runtime system for heterogeneous, distributed memory machines. Realm is fully asynchronous: all runtime actions are non-blocking. Realm supports spawning computations, moving data, and reservations, a novel synchronization primitive. Asynchrony is exposed via a light-weight event system capable of operating without central management. We describe an implementation of Realm that relies on a novel generational event data structure for efficiently handling large numbers of events in a distributed address space. Microbenchmark experiments show our implementation of Realm approaches the underlying hardware performance limits. We measure the performance of three real-world applications on the Keeneland supercomputer. Our results demonstrate that Realm confers considerable latency hiding to clients, attaining significant speedups over traditional bulk-synchronous and independently optimized MPI codes.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Realm: An event-based low-level runtime for distributed memory architectures\",\"authors\":\"Sean Treichler, Michael A. Bauer, A. Aiken\",\"doi\":\"10.1145/2628071.2628084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Realm, an event-based runtime system for heterogeneous, distributed memory machines. Realm is fully asynchronous: all runtime actions are non-blocking. Realm supports spawning computations, moving data, and reservations, a novel synchronization primitive. Asynchrony is exposed via a light-weight event system capable of operating without central management. We describe an implementation of Realm that relies on a novel generational event data structure for efficiently handling large numbers of events in a distributed address space. Microbenchmark experiments show our implementation of Realm approaches the underlying hardware performance limits. We measure the performance of three real-world applications on the Keeneland supercomputer. Our results demonstrate that Realm confers considerable latency hiding to clients, attaining significant speedups over traditional bulk-synchronous and independently optimized MPI codes.\",\"PeriodicalId\":263670,\"journal\":{\"name\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2628071.2628084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2628084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realm: An event-based low-level runtime for distributed memory architectures
We present Realm, an event-based runtime system for heterogeneous, distributed memory machines. Realm is fully asynchronous: all runtime actions are non-blocking. Realm supports spawning computations, moving data, and reservations, a novel synchronization primitive. Asynchrony is exposed via a light-weight event system capable of operating without central management. We describe an implementation of Realm that relies on a novel generational event data structure for efficiently handling large numbers of events in a distributed address space. Microbenchmark experiments show our implementation of Realm approaches the underlying hardware performance limits. We measure the performance of three real-world applications on the Keeneland supercomputer. Our results demonstrate that Realm confers considerable latency hiding to clients, attaining significant speedups over traditional bulk-synchronous and independently optimized MPI codes.