集成生产批量和调度问题的GPU加速元启发式算法

Attilio Sbrana, Deisemara Ferreira, R. F. Cantão
{"title":"集成生产批量和调度问题的GPU加速元启发式算法","authors":"Attilio Sbrana, Deisemara Ferreira, R. F. Cantão","doi":"10.1109/IICAIET55139.2022.9936782","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation of GPU-accelerated multi-population algorithms for two-stage multi-machine lot scheduling problems. While the literature suggests a variety of optimization techniques for this class of problems, here we investigate GPU vectorized Differential Evolutionary and Dispersive Flies Optimization algorithms combined with an exact Branch-and-Cut method. Computational tests with in-stances from the literature have shown that the GPU-accelerated heuristics can offer, in some cases, computational times that are not attainable with exact methods. Finally, in the conclusion potential areas for further study are discussed.","PeriodicalId":142482,"journal":{"name":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU Accelerated Metaheuristics for Integrated Production Lot Sizing and Scheduling Problems\",\"authors\":\"Attilio Sbrana, Deisemara Ferreira, R. F. Cantão\",\"doi\":\"10.1109/IICAIET55139.2022.9936782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation of GPU-accelerated multi-population algorithms for two-stage multi-machine lot scheduling problems. While the literature suggests a variety of optimization techniques for this class of problems, here we investigate GPU vectorized Differential Evolutionary and Dispersive Flies Optimization algorithms combined with an exact Branch-and-Cut method. Computational tests with in-stances from the literature have shown that the GPU-accelerated heuristics can offer, in some cases, computational times that are not attainable with exact methods. Finally, in the conclusion potential areas for further study are discussed.\",\"PeriodicalId\":142482,\"journal\":{\"name\":\"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET55139.2022.9936782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET55139.2022.9936782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于gpu加速的多种群算法在两阶段多机器批次调度问题中的应用。虽然文献提出了针对这类问题的各种优化技术,但在这里,我们研究了GPU矢量化差分进化和分散苍蝇优化算法,并结合了精确的分支和切割方法。使用文献中的实例进行的计算测试表明,在某些情况下,gpu加速的启发式方法可以提供精确方法无法实现的计算时间。最后,在结论部分对今后的研究方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Accelerated Metaheuristics for Integrated Production Lot Sizing and Scheduling Problems
This paper presents an investigation of GPU-accelerated multi-population algorithms for two-stage multi-machine lot scheduling problems. While the literature suggests a variety of optimization techniques for this class of problems, here we investigate GPU vectorized Differential Evolutionary and Dispersive Flies Optimization algorithms combined with an exact Branch-and-Cut method. Computational tests with in-stances from the literature have shown that the GPU-accelerated heuristics can offer, in some cases, computational times that are not attainable with exact methods. Finally, in the conclusion potential areas for further study are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信