重要的拉格朗日线性热点发现

Y. Li, Yiqun Xie, Pengyue Wang, S. Shekhar, W. Northrop
{"title":"重要的拉格朗日线性热点发现","authors":"Y. Li, Yiqun Xie, Pengyue Wang, S. Shekhar, W. Northrop","doi":"10.1145/3423457.3429368","DOIUrl":null,"url":null,"abstract":"Given a collection of multi-attribute trajectories, an event definition, and a spatial network, the Significant Lagrangian Linear Hotspot Discovery (SLLHD) problem finds the paths where records in the trajectories tend to be events in the Lagrangian perspective. The SLLHD problem is of significant societal importance because of its applications in transportation planning, vehicle design, and environmental protection. Its main challenges include the potentially large number of candidate hotspots caused by the tremendous volume of trajectories as well as the non-monotonicity of the statistic measuring event concentration. The related work on the linear hotspot discovery problem is designed in the Eulerian perspective and focuses on point datasets, which ignores the dependence of event occurrence on trajectories and the paths where trajectories are. To solve this problem, we introduce an algorithm in the Lagrangian perspective, as well as five refinements that improve its computational scalability. Two case studies on real-world datasets and experiments on synthetic data show that the proposed approach finds hotspots which are not detectable by existing techniques. Cost analysis and experimental results on synthetic data show that the proposed approach yields substantial computational savings.","PeriodicalId":129055,"journal":{"name":"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Significant lagrangian linear hotspot discovery\",\"authors\":\"Y. Li, Yiqun Xie, Pengyue Wang, S. Shekhar, W. Northrop\",\"doi\":\"10.1145/3423457.3429368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a collection of multi-attribute trajectories, an event definition, and a spatial network, the Significant Lagrangian Linear Hotspot Discovery (SLLHD) problem finds the paths where records in the trajectories tend to be events in the Lagrangian perspective. The SLLHD problem is of significant societal importance because of its applications in transportation planning, vehicle design, and environmental protection. Its main challenges include the potentially large number of candidate hotspots caused by the tremendous volume of trajectories as well as the non-monotonicity of the statistic measuring event concentration. The related work on the linear hotspot discovery problem is designed in the Eulerian perspective and focuses on point datasets, which ignores the dependence of event occurrence on trajectories and the paths where trajectories are. To solve this problem, we introduce an algorithm in the Lagrangian perspective, as well as five refinements that improve its computational scalability. Two case studies on real-world datasets and experiments on synthetic data show that the proposed approach finds hotspots which are not detectable by existing techniques. Cost analysis and experimental results on synthetic data show that the proposed approach yields substantial computational savings.\",\"PeriodicalId\":129055,\"journal\":{\"name\":\"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423457.3429368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423457.3429368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定一组多属性轨迹、一个事件定义和一个空间网络,显著拉格朗日线性热点发现(SLLHD)问题找到轨迹中记录趋向于拉格朗日视角下事件的路径。由于SLLHD问题在交通规划、车辆设计和环境保护方面的应用,它具有重要的社会意义。该方法面临的主要挑战是由于轨迹的巨大体积导致潜在的大量候选热点,以及测量事件集中的统计量的非单调性。线性热点发现问题的相关工作是从欧拉的角度设计的,主要关注点数据集,忽略了事件发生对轨迹和轨迹所在路径的依赖。为了解决这个问题,我们从拉格朗日的角度引入了一种算法,并对其进行了五种改进,以提高其计算可扩展性。对真实数据集的两个案例研究和对合成数据的实验表明,该方法发现了现有技术无法检测到的热点。成本分析和综合数据的实验结果表明,该方法节省了大量的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significant lagrangian linear hotspot discovery
Given a collection of multi-attribute trajectories, an event definition, and a spatial network, the Significant Lagrangian Linear Hotspot Discovery (SLLHD) problem finds the paths where records in the trajectories tend to be events in the Lagrangian perspective. The SLLHD problem is of significant societal importance because of its applications in transportation planning, vehicle design, and environmental protection. Its main challenges include the potentially large number of candidate hotspots caused by the tremendous volume of trajectories as well as the non-monotonicity of the statistic measuring event concentration. The related work on the linear hotspot discovery problem is designed in the Eulerian perspective and focuses on point datasets, which ignores the dependence of event occurrence on trajectories and the paths where trajectories are. To solve this problem, we introduce an algorithm in the Lagrangian perspective, as well as five refinements that improve its computational scalability. Two case studies on real-world datasets and experiments on synthetic data show that the proposed approach finds hotspots which are not detectable by existing techniques. Cost analysis and experimental results on synthetic data show that the proposed approach yields substantial computational savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信