{"title":"z -超刚性和z -边界表示","authors":"V. A. Anjali, Athul Augustine, P. Shankar","doi":"10.17993/3cemp.2022.110250.173-184","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the notions of Z-finite representations and Z-separation property of representations for operator Z-systems generating C∗-algebras. We use these notions to characterize the Z-boundary representations for operator Z-systems. We introduce Z-hyperrigidity of operator Z-systems. We investigate an analogue version of Saskin’s theorem in the setting of operator Z-systems generating C∗-algebras.","PeriodicalId":365908,"journal":{"name":"3C Empresa. Investigación y pensamiento crítico","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z-Hyperrigidity and Z-boundary representations\",\"authors\":\"V. A. Anjali, Athul Augustine, P. Shankar\",\"doi\":\"10.17993/3cemp.2022.110250.173-184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce the notions of Z-finite representations and Z-separation property of representations for operator Z-systems generating C∗-algebras. We use these notions to characterize the Z-boundary representations for operator Z-systems. We introduce Z-hyperrigidity of operator Z-systems. We investigate an analogue version of Saskin’s theorem in the setting of operator Z-systems generating C∗-algebras.\",\"PeriodicalId\":365908,\"journal\":{\"name\":\"3C Empresa. Investigación y pensamiento crítico\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Empresa. Investigación y pensamiento crítico\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3cemp.2022.110250.173-184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Empresa. Investigación y pensamiento crítico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3cemp.2022.110250.173-184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we introduce the notions of Z-finite representations and Z-separation property of representations for operator Z-systems generating C∗-algebras. We use these notions to characterize the Z-boundary representations for operator Z-systems. We introduce Z-hyperrigidity of operator Z-systems. We investigate an analogue version of Saskin’s theorem in the setting of operator Z-systems generating C∗-algebras.