双环Feynman积分的图解协同作用

S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew
{"title":"双环Feynman积分的图解协同作用","authors":"S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew","doi":"10.22323/1.375.0065","DOIUrl":null,"url":null,"abstract":"It is known that one-loop Feynman integrals possess an algebraic structure encoding some of their analytic properties called the coaction, which can be written in terms of Feynman integrals and their cuts. This diagrammatic coaction, and the coaction on other classes of integrals such as hypergeometric functions, may be expressed using suitable bases of differential forms and integration contours. This provides a useful framework for computing coactions of Feynman integrals expressed using the hypergeometric functions. We will discuss examples where this technique has been used in the calculation of two-loop diagrammatic coactions.","PeriodicalId":440413,"journal":{"name":"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Diagrammatic Coaction of Two-Loop Feynman Integrals\",\"authors\":\"S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew\",\"doi\":\"10.22323/1.375.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that one-loop Feynman integrals possess an algebraic structure encoding some of their analytic properties called the coaction, which can be written in terms of Feynman integrals and their cuts. This diagrammatic coaction, and the coaction on other classes of integrals such as hypergeometric functions, may be expressed using suitable bases of differential forms and integration contours. This provides a useful framework for computing coactions of Feynman integrals expressed using the hypergeometric functions. We will discuss examples where this technique has been used in the calculation of two-loop diagrammatic coactions.\",\"PeriodicalId\":440413,\"journal\":{\"name\":\"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.375.0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.375.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

众所周知,单环费曼积分具有一种代数结构,它编码了它们的一些解析性质,称为协同作用,它可以用费曼积分及其切割来表示。这种图解性的协同作用,以及其他类积分(如超几何函数)上的协同作用,可以用适当的微分形式和积分轮廓的基来表示。这为计算用超几何函数表示的费曼积分的协量提供了一个有用的框架。我们将讨论在双环图解协同计算中使用该技术的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagrammatic Coaction of Two-Loop Feynman Integrals
It is known that one-loop Feynman integrals possess an algebraic structure encoding some of their analytic properties called the coaction, which can be written in terms of Feynman integrals and their cuts. This diagrammatic coaction, and the coaction on other classes of integrals such as hypergeometric functions, may be expressed using suitable bases of differential forms and integration contours. This provides a useful framework for computing coactions of Feynman integrals expressed using the hypergeometric functions. We will discuss examples where this technique has been used in the calculation of two-loop diagrammatic coactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信