S. Rezazadeh, M. Ardestani, Parichehr Shahidi Sadeghi
{"title":"基于自适应神经模糊推理系统的四旋翼无人机姿态最优控制","authors":"S. Rezazadeh, M. Ardestani, Parichehr Shahidi Sadeghi","doi":"10.1109/ICCIAUTOM.2013.6912838","DOIUrl":null,"url":null,"abstract":"This paper develops an Adaptive Neuro-Fuzzy Inference System (ANFIS) to control a quadrotor UAV. Adaptive capabilities of the proposed controller help to stabilize the complex and under-actuated rotorcraft system. Parameters of the controller are optimized using Nondominated Sorting Genetic Algorithm-II. Simulations show that ANFIS improves response properties compared to simple PID control.","PeriodicalId":444883,"journal":{"name":"The 3rd International Conference on Control, Instrumentation, and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Optimal attitude control of a quadrotor UAV using Adaptive Neuro-Fuzzy Inference System (ANFIS)\",\"authors\":\"S. Rezazadeh, M. Ardestani, Parichehr Shahidi Sadeghi\",\"doi\":\"10.1109/ICCIAUTOM.2013.6912838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an Adaptive Neuro-Fuzzy Inference System (ANFIS) to control a quadrotor UAV. Adaptive capabilities of the proposed controller help to stabilize the complex and under-actuated rotorcraft system. Parameters of the controller are optimized using Nondominated Sorting Genetic Algorithm-II. Simulations show that ANFIS improves response properties compared to simple PID control.\",\"PeriodicalId\":444883,\"journal\":{\"name\":\"The 3rd International Conference on Control, Instrumentation, and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International Conference on Control, Instrumentation, and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2013.6912838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International Conference on Control, Instrumentation, and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2013.6912838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal attitude control of a quadrotor UAV using Adaptive Neuro-Fuzzy Inference System (ANFIS)
This paper develops an Adaptive Neuro-Fuzzy Inference System (ANFIS) to control a quadrotor UAV. Adaptive capabilities of the proposed controller help to stabilize the complex and under-actuated rotorcraft system. Parameters of the controller are optimized using Nondominated Sorting Genetic Algorithm-II. Simulations show that ANFIS improves response properties compared to simple PID control.