为越南电信呼叫中心开发越南语语音识别系统

Quoc Bao Nguyen, Van Hai Do, Ba Quyen Dam, Minh Hung Le
{"title":"为越南电信呼叫中心开发越南语语音识别系统","authors":"Quoc Bao Nguyen, Van Hai Do, Ba Quyen Dam, Minh Hung Le","doi":"10.1109/ICSDA.2017.8384456","DOIUrl":null,"url":null,"abstract":"In this paper, we first present our effort to collect a 85.8 hour corpus for Vietnamese telephone conversational speech from our Viettel call center. After that, various techniques such as time delay deep neural network (TDNN) with sequence training, data augmentation are applied to build the speech recognition system. Our final system achieves a low word error rate at 17.44% for this challenging corpus. To the best of our knowledge, it is the first attempt to build Vietnamese corpus and speech recognition system for the customer service domain.","PeriodicalId":255147,"journal":{"name":"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of a Vietnamese speech recognition system for Viettel call center\",\"authors\":\"Quoc Bao Nguyen, Van Hai Do, Ba Quyen Dam, Minh Hung Le\",\"doi\":\"10.1109/ICSDA.2017.8384456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first present our effort to collect a 85.8 hour corpus for Vietnamese telephone conversational speech from our Viettel call center. After that, various techniques such as time delay deep neural network (TDNN) with sequence training, data augmentation are applied to build the speech recognition system. Our final system achieves a low word error rate at 17.44% for this challenging corpus. To the best of our knowledge, it is the first attempt to build Vietnamese corpus and speech recognition system for the customer service domain.\",\"PeriodicalId\":255147,\"journal\":{\"name\":\"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSDA.2017.8384456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2017.8384456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们首先展示了从我们的Viettel呼叫中心收集85.8小时越南电话会话语音语料库的努力。在此基础上,采用时序训练、数据增强的时延深度神经网络(TDNN)等技术构建语音识别系统。我们的最终系统在这个具有挑战性的语料库中实现了17.44%的低单词错误率。据我们所知,这是第一次尝试为客户服务领域建立越南语语料库和语音识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Vietnamese speech recognition system for Viettel call center
In this paper, we first present our effort to collect a 85.8 hour corpus for Vietnamese telephone conversational speech from our Viettel call center. After that, various techniques such as time delay deep neural network (TDNN) with sequence training, data augmentation are applied to build the speech recognition system. Our final system achieves a low word error rate at 17.44% for this challenging corpus. To the best of our knowledge, it is the first attempt to build Vietnamese corpus and speech recognition system for the customer service domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信