{"title":"生物学上似是而非的神经网络研究:脑激励机制在持续学习中的作用和相互作用","authors":"F. Sarfraz, E. Arani, Bahram Zonooz","doi":"10.48550/arXiv.2304.06738","DOIUrl":null,"url":null,"abstract":"Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting. There are considerable differences in the complexity of synapses, the processing of information, and the learning mechanisms in biological neural networks and their artificial counterparts, which may explain the mismatch in performance. We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle, and the excitatory pyramidal neurons are augmented with dendritic-like structures for context-dependent processing of stimuli. We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event. Our study suggests that the employing of multiple complementary mechanisms in a biologically plausible architecture, similar to the brain, may be effective in enabling continual learning in ANNs.","PeriodicalId":432739,"journal":{"name":"Trans. Mach. Learn. Res.","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study of Biologically Plausible Neural Network: The Role and Interactions of Brain-Inspired Mechanisms in Continual Learning\",\"authors\":\"F. Sarfraz, E. Arani, Bahram Zonooz\",\"doi\":\"10.48550/arXiv.2304.06738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting. There are considerable differences in the complexity of synapses, the processing of information, and the learning mechanisms in biological neural networks and their artificial counterparts, which may explain the mismatch in performance. We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle, and the excitatory pyramidal neurons are augmented with dendritic-like structures for context-dependent processing of stimuli. We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event. Our study suggests that the employing of multiple complementary mechanisms in a biologically plausible architecture, similar to the brain, may be effective in enabling continual learning in ANNs.\",\"PeriodicalId\":432739,\"journal\":{\"name\":\"Trans. Mach. Learn. Res.\",\"volume\":\"2023 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trans. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.06738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trans. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.06738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Biologically Plausible Neural Network: The Role and Interactions of Brain-Inspired Mechanisms in Continual Learning
Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting. There are considerable differences in the complexity of synapses, the processing of information, and the learning mechanisms in biological neural networks and their artificial counterparts, which may explain the mismatch in performance. We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle, and the excitatory pyramidal neurons are augmented with dendritic-like structures for context-dependent processing of stimuli. We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event. Our study suggests that the employing of multiple complementary mechanisms in a biologically plausible architecture, similar to the brain, may be effective in enabling continual learning in ANNs.