基于自适应资源分配网络分类器的乳腺x线图像计算机辅助检测与分类

S. Shanthi, V. Bhaskaran
{"title":"基于自适应资源分配网络分类器的乳腺x线图像计算机辅助检测与分类","authors":"S. Shanthi, V. Bhaskaran","doi":"10.1109/ICPRIME.2012.6208359","DOIUrl":null,"url":null,"abstract":"This study presents a computer aided system for automatic detection and classification of breast cancer in mammogram images. First the suspicious region or the Region of Interest is identified and extracted using Intuitionistic Fuzzy C-Means Clustering technique. Next multilevel Discrete Wavelet Transformation is applied to the extracted Region of Interest. After applying Discrete Wavelet Transformation, histogram features, Gray Level Concurrence wavelet features, and wavelet energy features are extracted from each Region of Interest of the image. Before classification, Principal Component Analysis is applied on the extracted features to reduce the feature dimension. Finally, the feature database is submitted to self-adaptive resource allocation network classifier for classification. The proposed system is verified with 295 mammograms in the Mammographic Image Analysis Society Database. The result shows that the proposed algorithm produces better results.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computer aided detection and classification of mammogram using self-adaptive resource allocation network classifier\",\"authors\":\"S. Shanthi, V. Bhaskaran\",\"doi\":\"10.1109/ICPRIME.2012.6208359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a computer aided system for automatic detection and classification of breast cancer in mammogram images. First the suspicious region or the Region of Interest is identified and extracted using Intuitionistic Fuzzy C-Means Clustering technique. Next multilevel Discrete Wavelet Transformation is applied to the extracted Region of Interest. After applying Discrete Wavelet Transformation, histogram features, Gray Level Concurrence wavelet features, and wavelet energy features are extracted from each Region of Interest of the image. Before classification, Principal Component Analysis is applied on the extracted features to reduce the feature dimension. Finally, the feature database is submitted to self-adaptive resource allocation network classifier for classification. The proposed system is verified with 295 mammograms in the Mammographic Image Analysis Society Database. The result shows that the proposed algorithm produces better results.\",\"PeriodicalId\":148511,\"journal\":{\"name\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2012.6208359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究提出一种用于乳房x光影像中乳癌自动侦测与分类的电脑辅助系统。首先利用直觉模糊c均值聚类技术对可疑区域或感兴趣区域进行识别和提取;然后对提取的感兴趣区域进行多层离散小波变换。应用离散小波变换,从图像的每个感兴趣区域提取直方图特征、灰度并发小波特征和小波能量特征。在分类之前,对提取的特征进行主成分分析,降低特征维数。最后,将特征库提交给自适应资源分配网络分类器进行分类。该系统通过乳房x线图像分析学会数据库中的295张乳房x线照片进行验证。结果表明,该算法具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer aided detection and classification of mammogram using self-adaptive resource allocation network classifier
This study presents a computer aided system for automatic detection and classification of breast cancer in mammogram images. First the suspicious region or the Region of Interest is identified and extracted using Intuitionistic Fuzzy C-Means Clustering technique. Next multilevel Discrete Wavelet Transformation is applied to the extracted Region of Interest. After applying Discrete Wavelet Transformation, histogram features, Gray Level Concurrence wavelet features, and wavelet energy features are extracted from each Region of Interest of the image. Before classification, Principal Component Analysis is applied on the extracted features to reduce the feature dimension. Finally, the feature database is submitted to self-adaptive resource allocation network classifier for classification. The proposed system is verified with 295 mammograms in the Mammographic Image Analysis Society Database. The result shows that the proposed algorithm produces better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信