一般有限状态信道容量公式的结构及其应用

H. Boche, R. Schaefer, H. Poor
{"title":"一般有限状态信道容量公式的结构及其应用","authors":"H. Boche, R. Schaefer, H. Poor","doi":"10.1109/ITW44776.2019.8989035","DOIUrl":null,"url":null,"abstract":"Finite state channels (FSCs) model discrete channels with memory where the channel output depends on the channel input and the actual channel state. The capacity of general FSCs has been established as the limit of a sequence of multi-letter expressions; a corresponding finite-letter characterization is not known to date. In this paper, it is shown that it is indeed not possible to find such a finite-letter entropic characterization for FSCs whose input, output, and state alphabets satisfy |X| $\\geq2$, |Y| $\\geq2$, and |${S}$| $\\geq2$. Further, the algorithmic computability of the capacity of FSCs is studied. To account for this, the concept of a Turing machine is adopted as it provides fundamental performance limits for today’s digital computers. It is shown that the capacity of a FSC is not Banach-Mazur computable and therewith not Turing computable for $|\\mathcal {X}| \\geq 2, |\\mathcal {Y}| \\geq 2, |S| \\geq 2$.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the Structure of the Capacity Formula for General Finite State Channels with Applications\",\"authors\":\"H. Boche, R. Schaefer, H. Poor\",\"doi\":\"10.1109/ITW44776.2019.8989035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite state channels (FSCs) model discrete channels with memory where the channel output depends on the channel input and the actual channel state. The capacity of general FSCs has been established as the limit of a sequence of multi-letter expressions; a corresponding finite-letter characterization is not known to date. In this paper, it is shown that it is indeed not possible to find such a finite-letter entropic characterization for FSCs whose input, output, and state alphabets satisfy |X| $\\\\geq2$, |Y| $\\\\geq2$, and |${S}$| $\\\\geq2$. Further, the algorithmic computability of the capacity of FSCs is studied. To account for this, the concept of a Turing machine is adopted as it provides fundamental performance limits for today’s digital computers. It is shown that the capacity of a FSC is not Banach-Mazur computable and therewith not Turing computable for $|\\\\mathcal {X}| \\\\geq 2, |\\\\mathcal {Y}| \\\\geq 2, |S| \\\\geq 2$.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

有限状态通道(FSCs)模拟具有存储器的离散通道,其中通道输出取决于通道输入和实际通道状态。一般FSCs的容量被确定为多字母表达式序列的极限;迄今为止还不知道相应的有限字母表征。本文表明,对于输入、输出和状态字母满足|X| $\geq2$、|Y| $\geq2$和| ${S}$ | $\geq2$的FSCs,确实不可能找到这样的有限字母熵表征。进一步研究了FSCs容量的算法可计算性。为了解释这一点,图灵机的概念被采用,因为它为今天的数字计算机提供了基本的性能限制。证明了对于$|\mathcal {X}| \geq 2, |\mathcal {Y}| \geq 2, |S| \geq 2$, FSC的容量不是Banach-Mazur可计算的,因此也不是图灵可计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Structure of the Capacity Formula for General Finite State Channels with Applications
Finite state channels (FSCs) model discrete channels with memory where the channel output depends on the channel input and the actual channel state. The capacity of general FSCs has been established as the limit of a sequence of multi-letter expressions; a corresponding finite-letter characterization is not known to date. In this paper, it is shown that it is indeed not possible to find such a finite-letter entropic characterization for FSCs whose input, output, and state alphabets satisfy |X| $\geq2$, |Y| $\geq2$, and |${S}$| $\geq2$. Further, the algorithmic computability of the capacity of FSCs is studied. To account for this, the concept of a Turing machine is adopted as it provides fundamental performance limits for today’s digital computers. It is shown that the capacity of a FSC is not Banach-Mazur computable and therewith not Turing computable for $|\mathcal {X}| \geq 2, |\mathcal {Y}| \geq 2, |S| \geq 2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信