查询语义轨迹集

T. P. Nogueira, H. Martin
{"title":"查询语义轨迹集","authors":"T. P. Nogueira, H. Martin","doi":"10.1145/2834126.2834136","DOIUrl":null,"url":null,"abstract":"Trajectory acquisition, management, and processing are important tasks for any application that deals with spatiotemporal data. In order to perform these tasks effectively, it is important to rely on flexible structures. Many data models have been proposed for representing spatiotemporal traces. However, modeling trajectory characteristics and context information is still a challenge. In this work, we introduce the STEP ontology (Semantic Trajectory Episodes) for trajectory enrichment. In order to model this domain, we structure trajectories and related contextual data in terms of semantic episodes that allow describing various characteristics of the traces and context along time and space dimensions. We demonstrate the usage of the STEP ontology for enriching raw trajectories and show how the proposed model may be useful for trajectory analysis tasks.","PeriodicalId":194029,"journal":{"name":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Querying semantic trajectory episodes\",\"authors\":\"T. P. Nogueira, H. Martin\",\"doi\":\"10.1145/2834126.2834136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory acquisition, management, and processing are important tasks for any application that deals with spatiotemporal data. In order to perform these tasks effectively, it is important to rely on flexible structures. Many data models have been proposed for representing spatiotemporal traces. However, modeling trajectory characteristics and context information is still a challenge. In this work, we introduce the STEP ontology (Semantic Trajectory Episodes) for trajectory enrichment. In order to model this domain, we structure trajectories and related contextual data in terms of semantic episodes that allow describing various characteristics of the traces and context along time and space dimensions. We demonstrate the usage of the STEP ontology for enriching raw trajectories and show how the proposed model may be useful for trajectory analysis tasks.\",\"PeriodicalId\":194029,\"journal\":{\"name\":\"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2834126.2834136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2834126.2834136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

轨迹的获取、管理和处理对于任何处理时空数据的应用程序都是重要的任务。为了有效地执行这些任务,依靠灵活的结构是很重要的。为了表示时空轨迹,已经提出了许多数据模型。然而,轨迹特征和上下文信息的建模仍然是一个挑战。在这项工作中,我们引入了STEP本体(Semantic Trajectory Episodes)来进行轨迹丰富。为了对该领域进行建模,我们根据语义集构建轨迹和相关上下文数据,这些语义集允许沿着时间和空间维度描述轨迹和上下文的各种特征。我们演示了STEP本体用于丰富原始轨迹的用法,并展示了所提出的模型如何对轨迹分析任务有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Querying semantic trajectory episodes
Trajectory acquisition, management, and processing are important tasks for any application that deals with spatiotemporal data. In order to perform these tasks effectively, it is important to rely on flexible structures. Many data models have been proposed for representing spatiotemporal traces. However, modeling trajectory characteristics and context information is still a challenge. In this work, we introduce the STEP ontology (Semantic Trajectory Episodes) for trajectory enrichment. In order to model this domain, we structure trajectories and related contextual data in terms of semantic episodes that allow describing various characteristics of the traces and context along time and space dimensions. We demonstrate the usage of the STEP ontology for enriching raw trajectories and show how the proposed model may be useful for trajectory analysis tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信