C. Roque-Borda, Bruna Fernandes Antunes, S. R. Teixeira, E. Vicente
{"title":"负载Ctx(Ile21)-Ha抗菌肽†的玉米淀粉/壳聚糖膜的潜在保护活性和稳定性","authors":"C. Roque-Borda, Bruna Fernandes Antunes, S. R. Teixeira, E. Vicente","doi":"10.3390/ecms2021-10837","DOIUrl":null,"url":null,"abstract":"The high mortality rate of different multi-resistant bacteria (MDR) has led to an immediate and urgent solution. Patients hospitalized for chronic diseases have a weakened immune system and are at high risk of contracting an opportunistic infection. Likewise, the WHO prioritized studies against a selected group of MDR bacteria for their control [1]. In this scope, the Ctx(Ile21)-Ha antimicrobial peptide (AMP) presented great potential and efficient biological activity against Acinetobacter baumannii and Pseudomonas aureginosa MDR bacteria [2,3,4]. Thus, the aim of this research was to design ultrasound-assisted micro-structured films loaded with the Ctx(Ile21)-Ha AMP, based on starch and chitosan, for its effective protective action. Gelling was performed for grain breaking and to expose the hydroxyls [5]. For this, 10 g of cornstarch was used as well as 300 mL of distilled water under agitation at 90 °C for 1 h. Then, 5 mL of the gelled starch was added and mixed with 50 mg of peptide. Then, it was stored in petri dishes at 50 °C for 5 h. Chitosan film was synthesized by free-radical polymerization in the presence of crosslinker [6]. Chitosan dispersion (CD) was prepared by dissolving 2% w/v chitosan in 2% v/v acetic acid solution. Ctx(Ile21)-Ha was placed on the CD with 0.3% w/v of glycerol and magnetic agitation at 150 rpm. For this, its properties were evaluated by DSC/TGA, FTIR, XRD, and SEM. The physicochemical stability studies of the AMP showed its structure unchanged for up to 3 months exposed to water and for up to one year in the form of a dry film. These results were confirmed by the LC/MS profile, in which XDR indicates a consistent semi-morpho phase. Finally, with these results, we check its stability and protective potential over time and, based on previously published results on their activity against MDR bacteria [2], we conclude that the new products based on AMPs could be potential anti-MDR bacterial agents, avoiding the exposure of critically ill patients in intensive care or post-surgery beds and preventing their dissemination.","PeriodicalId":147460,"journal":{"name":"Medical Sciences Forum","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Protective Activity and Stability of Cornstarch/Chitosan Films Loaded with the Ctx(Ile21)-Ha Antimicrobial Peptide †\",\"authors\":\"C. Roque-Borda, Bruna Fernandes Antunes, S. R. Teixeira, E. Vicente\",\"doi\":\"10.3390/ecms2021-10837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high mortality rate of different multi-resistant bacteria (MDR) has led to an immediate and urgent solution. Patients hospitalized for chronic diseases have a weakened immune system and are at high risk of contracting an opportunistic infection. Likewise, the WHO prioritized studies against a selected group of MDR bacteria for their control [1]. In this scope, the Ctx(Ile21)-Ha antimicrobial peptide (AMP) presented great potential and efficient biological activity against Acinetobacter baumannii and Pseudomonas aureginosa MDR bacteria [2,3,4]. Thus, the aim of this research was to design ultrasound-assisted micro-structured films loaded with the Ctx(Ile21)-Ha AMP, based on starch and chitosan, for its effective protective action. Gelling was performed for grain breaking and to expose the hydroxyls [5]. For this, 10 g of cornstarch was used as well as 300 mL of distilled water under agitation at 90 °C for 1 h. Then, 5 mL of the gelled starch was added and mixed with 50 mg of peptide. Then, it was stored in petri dishes at 50 °C for 5 h. Chitosan film was synthesized by free-radical polymerization in the presence of crosslinker [6]. Chitosan dispersion (CD) was prepared by dissolving 2% w/v chitosan in 2% v/v acetic acid solution. Ctx(Ile21)-Ha was placed on the CD with 0.3% w/v of glycerol and magnetic agitation at 150 rpm. For this, its properties were evaluated by DSC/TGA, FTIR, XRD, and SEM. The physicochemical stability studies of the AMP showed its structure unchanged for up to 3 months exposed to water and for up to one year in the form of a dry film. These results were confirmed by the LC/MS profile, in which XDR indicates a consistent semi-morpho phase. Finally, with these results, we check its stability and protective potential over time and, based on previously published results on their activity against MDR bacteria [2], we conclude that the new products based on AMPs could be potential anti-MDR bacterial agents, avoiding the exposure of critically ill patients in intensive care or post-surgery beds and preventing their dissemination.\",\"PeriodicalId\":147460,\"journal\":{\"name\":\"Medical Sciences Forum\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Sciences Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecms2021-10837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Sciences Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecms2021-10837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Potential Protective Activity and Stability of Cornstarch/Chitosan Films Loaded with the Ctx(Ile21)-Ha Antimicrobial Peptide †
The high mortality rate of different multi-resistant bacteria (MDR) has led to an immediate and urgent solution. Patients hospitalized for chronic diseases have a weakened immune system and are at high risk of contracting an opportunistic infection. Likewise, the WHO prioritized studies against a selected group of MDR bacteria for their control [1]. In this scope, the Ctx(Ile21)-Ha antimicrobial peptide (AMP) presented great potential and efficient biological activity against Acinetobacter baumannii and Pseudomonas aureginosa MDR bacteria [2,3,4]. Thus, the aim of this research was to design ultrasound-assisted micro-structured films loaded with the Ctx(Ile21)-Ha AMP, based on starch and chitosan, for its effective protective action. Gelling was performed for grain breaking and to expose the hydroxyls [5]. For this, 10 g of cornstarch was used as well as 300 mL of distilled water under agitation at 90 °C for 1 h. Then, 5 mL of the gelled starch was added and mixed with 50 mg of peptide. Then, it was stored in petri dishes at 50 °C for 5 h. Chitosan film was synthesized by free-radical polymerization in the presence of crosslinker [6]. Chitosan dispersion (CD) was prepared by dissolving 2% w/v chitosan in 2% v/v acetic acid solution. Ctx(Ile21)-Ha was placed on the CD with 0.3% w/v of glycerol and magnetic agitation at 150 rpm. For this, its properties were evaluated by DSC/TGA, FTIR, XRD, and SEM. The physicochemical stability studies of the AMP showed its structure unchanged for up to 3 months exposed to water and for up to one year in the form of a dry film. These results were confirmed by the LC/MS profile, in which XDR indicates a consistent semi-morpho phase. Finally, with these results, we check its stability and protective potential over time and, based on previously published results on their activity against MDR bacteria [2], we conclude that the new products based on AMPs could be potential anti-MDR bacterial agents, avoiding the exposure of critically ill patients in intensive care or post-surgery beds and preventing their dissemination.