{"title":"预测数值处理在自然设置从控制实验条件","authors":"J. Schrouff, C. Phillips, J. Parvizi, J. Miranda","doi":"10.1109/PRNI.2015.13","DOIUrl":null,"url":null,"abstract":"Machine learning research is interested in building models based on a training set that can then be applied to new data, whether this unseen data comes from new examples (e.g. New subjects, other tasks) or new features (e.g. Different modalities). In this work, we present a simple approach to transfer learning using intracranial EEG (also known as electrocorticographic, ECoG) data from three patients. More specifically, we aimed at detecting numerical processing during naturalistic settings based on a model trained with controlled experimental conditions. Our results showed significant prediction accuracy of numerical events in naturalistic settings when considering a priori knowledge of the target task.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Numerical Processing in Naturalistic Settings from Controlled Experimental Conditions\",\"authors\":\"J. Schrouff, C. Phillips, J. Parvizi, J. Miranda\",\"doi\":\"10.1109/PRNI.2015.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning research is interested in building models based on a training set that can then be applied to new data, whether this unseen data comes from new examples (e.g. New subjects, other tasks) or new features (e.g. Different modalities). In this work, we present a simple approach to transfer learning using intracranial EEG (also known as electrocorticographic, ECoG) data from three patients. More specifically, we aimed at detecting numerical processing during naturalistic settings based on a model trained with controlled experimental conditions. Our results showed significant prediction accuracy of numerical events in naturalistic settings when considering a priori knowledge of the target task.\",\"PeriodicalId\":380902,\"journal\":{\"name\":\"2015 International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2015.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Numerical Processing in Naturalistic Settings from Controlled Experimental Conditions
Machine learning research is interested in building models based on a training set that can then be applied to new data, whether this unseen data comes from new examples (e.g. New subjects, other tasks) or new features (e.g. Different modalities). In this work, we present a simple approach to transfer learning using intracranial EEG (also known as electrocorticographic, ECoG) data from three patients. More specifically, we aimed at detecting numerical processing during naturalistic settings based on a model trained with controlled experimental conditions. Our results showed significant prediction accuracy of numerical events in naturalistic settings when considering a priori knowledge of the target task.