控制离群稀疏度的鲁棒联合分析

G. Mateos, G. Giannakis
{"title":"控制离群稀疏度的鲁棒联合分析","authors":"G. Mateos, G. Giannakis","doi":"10.5281/ZENODO.42366","DOIUrl":null,"url":null,"abstract":"Preference measurement (PM) has a long history in marketing, healthcare, and the biobehavioral sciences, where conjoint analysis is commonly used. The goal of PM is to learn the utility function of an individual or a group of individuals from expressed preference data (buying patterns, surveys, ratings), possibly contaminated with outliers. For metric conjoint data, a robust partworth estimator is developed on the basis of a neat connection between ℓ0-(pseudo)norm-regularized regression, and the least-trimmed squared estimator. This connection suggests efficient solvers based on convex relaxation, which lead naturally to a family of robust estimators subsuming Huber's optimal M-class. Outliers are identified by tuning a regularization parameter, which amounts to controlling the sparsity of an outlier vector along the entire robustification path of least-absolute shrinkage and selection operator solutions. For choice-based conjoint analysis, a novel classifier is developed that is capable of attaining desirable tradeoffs between model fit and complexity, while at the same time controlling robustness and revealing the outliers present. Variants accounting for nonlinear utilities and consumer heterogeneity are also investigated.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Robust conjoint analysis by controlling outlier sparsity\",\"authors\":\"G. Mateos, G. Giannakis\",\"doi\":\"10.5281/ZENODO.42366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preference measurement (PM) has a long history in marketing, healthcare, and the biobehavioral sciences, where conjoint analysis is commonly used. The goal of PM is to learn the utility function of an individual or a group of individuals from expressed preference data (buying patterns, surveys, ratings), possibly contaminated with outliers. For metric conjoint data, a robust partworth estimator is developed on the basis of a neat connection between ℓ0-(pseudo)norm-regularized regression, and the least-trimmed squared estimator. This connection suggests efficient solvers based on convex relaxation, which lead naturally to a family of robust estimators subsuming Huber's optimal M-class. Outliers are identified by tuning a regularization parameter, which amounts to controlling the sparsity of an outlier vector along the entire robustification path of least-absolute shrinkage and selection operator solutions. For choice-based conjoint analysis, a novel classifier is developed that is capable of attaining desirable tradeoffs between model fit and complexity, while at the same time controlling robustness and revealing the outliers present. Variants accounting for nonlinear utilities and consumer heterogeneity are also investigated.\",\"PeriodicalId\":331889,\"journal\":{\"name\":\"2011 19th European Signal Processing Conference\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

偏好测量(PM)在市场营销、医疗保健和生物行为科学领域有着悠久的历史,在这些领域,联合分析是常用的。PM的目标是从表达的偏好数据(购买模式、调查、评级)中学习个人或一组个人的效用函数,这些数据可能被异常值所污染。对于度量联合数据,基于0-(伪)范数正则化回归与最小裁剪平方估计之间的整洁联系,给出了一个鲁棒部分值估计。这种联系提出了基于凸松弛的有效解,这自然导致了一组包含Huber最优m类的鲁棒估计。通过调整正则化参数来识别异常值,这相当于沿着最小绝对收缩和选择算子解决方案的整个鲁棒化路径控制异常值向量的稀疏性。对于基于选择的联合分析,开发了一种新的分类器,能够在模型拟合和复杂性之间实现理想的权衡,同时控制鲁棒性并揭示存在的异常值。考虑非线性效用和消费者异质性的变量也进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust conjoint analysis by controlling outlier sparsity
Preference measurement (PM) has a long history in marketing, healthcare, and the biobehavioral sciences, where conjoint analysis is commonly used. The goal of PM is to learn the utility function of an individual or a group of individuals from expressed preference data (buying patterns, surveys, ratings), possibly contaminated with outliers. For metric conjoint data, a robust partworth estimator is developed on the basis of a neat connection between ℓ0-(pseudo)norm-regularized regression, and the least-trimmed squared estimator. This connection suggests efficient solvers based on convex relaxation, which lead naturally to a family of robust estimators subsuming Huber's optimal M-class. Outliers are identified by tuning a regularization parameter, which amounts to controlling the sparsity of an outlier vector along the entire robustification path of least-absolute shrinkage and selection operator solutions. For choice-based conjoint analysis, a novel classifier is developed that is capable of attaining desirable tradeoffs between model fit and complexity, while at the same time controlling robustness and revealing the outliers present. Variants accounting for nonlinear utilities and consumer heterogeneity are also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信